Share

Rich Quasiparticle Properties of Low Dimensional Systems

Download Rich Quasiparticle Properties of Low Dimensional Systems PDF Online Free

Author :
Release : 2021
Genre : Carbon
Kind : eBook
Book Rating : 830/5 ( reviews)

GET EBOOK


Book Synopsis Rich Quasiparticle Properties of Low Dimensional Systems by : Dr Cheng-Hsueh Yang

Download or read book Rich Quasiparticle Properties of Low Dimensional Systems written by Dr Cheng-Hsueh Yang. This book was released on 2021. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the essential properties of carbon nanotubes and 2D graphene systems. The book focuses on the fundamental excitation properties of a large range of graphene-related materials, presenting a new theoretical framework that couples electronic properties and e-e Coulomb interactions together in order to thoroughly explore Coulomb excitations and decay rates in carbon-nanotube-related systems.

Rich Quasiparticle Properties In Layered Graphene-related Systems

Download Rich Quasiparticle Properties In Layered Graphene-related Systems PDF Online Free

Author :
Release : 2023-12-27
Genre : Science
Kind : eBook
Book Rating : 80X/5 ( reviews)

GET EBOOK


Book Synopsis Rich Quasiparticle Properties In Layered Graphene-related Systems by : Ming-fa Lin

Download or read book Rich Quasiparticle Properties In Layered Graphene-related Systems written by Ming-fa Lin. This book was released on 2023-12-27. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book delves into the fascinating world of quasiparticle properties of graphene-related materials. The authors thoroughly explore the intricate effects of intrinsic and extrinsic interactions on the material's properties, while unifying the single-particle and many-particle properties through the development of a theoretical framework. The book covers a wide range of research topics, including long-range Coulomb interactions, dynamic charge density waves, Friedel oscillations and plasmon excitations, as well as optical reflection and transmission spectra of thin films. Also it highlights the crucial roles of inelastic Coulomb scattering and optical scattering in the quasiparticle properties of layered systems, and the impact of crystal symmetry, number of layers, and stacking configuration on their uniqueness. Furthermore, the authors explore the topological properties of quasiparticles, including 2D time-reversal-symmetry protected topological insulators with quantum spin Hall effect, and rhombohedral graphite with Dirac nodal lines. Meanwhile, the book examines the gate potential application for creating topological localized states and shows topological invariants of 2D Dirac fermions, and binary Z2 topological invariants under chiral symmetry. The calculated results are consistent with the present experimental observations, establishing it as a valuable resource for individuals interested in the quasiparticle properties of novel materials.

Field Theories for Low-Dimensional Condensed Matter Systems

Download Field Theories for Low-Dimensional Condensed Matter Systems PDF Online Free

Author :
Release : 2013-03-14
Genre : Science
Kind : eBook
Book Rating : 738/5 ( reviews)

GET EBOOK


Book Synopsis Field Theories for Low-Dimensional Condensed Matter Systems by : Guiseppe Morandi

Download or read book Field Theories for Low-Dimensional Condensed Matter Systems written by Guiseppe Morandi. This book was released on 2013-03-14. Available in PDF, EPUB and Kindle. Book excerpt: This book is especially addressed to young researchers in theoretical physics with a basic background in Field Theory and Condensed Matter Physics. The topics were chosen so as to offer the largest possible overlap between the two expertises, selecting a few key problems in Condensed Matter Theory which have been recently revisited within a field-theoretic approach. The presentation of the material is aimed not only at providing the reader with an overview of this exciting frontier area of modern theoretical physics, but also at elucidating most of the tools needed for a technical comprehen sion of the many papers appearing in current issues of physics journals and, hopefully, to enable the reader to tackle research problems in this area of physics. This makes the material a live creature: while not pretending it to be exhaustive, it is tutorial enough to be useful to young researchers as a starting point in anyone of the topics covered in the book.

Quasiparticle and Optical Properties of Quasi-two-dimensional Systems

Download Quasiparticle and Optical Properties of Quasi-two-dimensional Systems PDF Online Free

Author :
Release : 2017
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Quasiparticle and Optical Properties of Quasi-two-dimensional Systems by : Felipe Homrich da Jornada

Download or read book Quasiparticle and Optical Properties of Quasi-two-dimensional Systems written by Felipe Homrich da Jornada. This book was released on 2017. Available in PDF, EPUB and Kindle. Book excerpt: Since the experimental isolation of graphene in 2004, there has been tremendous interest in studying quasi-two-dimensional (quasi-2D) systems. These atomically thin materials display a number of unique properties not found in their bulk counterparts, such as large self-energy and excitonic effects due to weaker screening in 2D. However, simple dimensionality arguments alone often fail to give quantitative - and sometimes qualitative - explanation of physical phenomena in these systems. Many low-energy excitation processes in these materials involve length scales comparable to the extent of these materials along the confined direction. Thus, many of these interesting properties are a result of the interplay of the physics of 2 and 3 dimensions. In order to predict quasiparticle and optical properties in these materials, it is therefore highly important to use methods that capture the explicit quasi-2D crystal structure and rely on as little experimental input as possible. Ab initio formalisms are well-tested, mature, and predictive methods for calculating physical properties of systems with arbitrary crystal structure and dimensionality. In particular, the ab initio GW and GW plus Bethe-Salpeter equation (BSE) approaches are reliable methods to compute quasiparticle and optical properties of materials without experimental parameters and for systems with arbitrary electronic structure and dimensionality. In this dissertation, we study the quasiparticle and optical properties of quasi-2D systems, with emphasis on graphene and monolayer transition metal dichalcogenides. This dissertation is divided into three parts. In the first part, we introduce the formalisms that allow us to compute quasiparticle and optical properties of material. We include a brief review of the quasiparticle approximation, and connect it to Green's function methods. We then introduce the GW approximation and the BSE as tools to compute quasiparticle and optical properties of materials, respectively. We include a simplified derivation of these two formalisms in terms of many-body perturbation theory and diagrammatic series. We also review how the GW approximation and the BSE are implemented into ab initio electronic-structure codes, such as BerkeleyGW. In the second part of the dissertation, we show our theoretical works on the quasiparticle and optical properties of quasi-2D systems. We compute the quasiparticle bandstructure, optical absorption spectrum, and excitonic series on monolayer MoS2, a prototypical quasi-2D semiconductor. We also understand the origin of novel physics in these materials, such as the presence of excitonic states that cannot be understood in terms of a 2D hydrogenic model. We understand these unique phenomena in terms of the unique features of the screening in 2D, and also show how this leads to severe challenges in applying the GW and GW-BSE approaches to system with reduced dimensionality. We then develop new methods that efficiently capture these fast variations of the screening, and reduce the computational cost of GW and GW-BSE approaches on these systems by orders of magnitude. Finally, in the third part of the dissertation, we show a variety of projects that are collabo- rations between our theoretical group at Berkeley and various experimental groups. In the first collaboration, we perform a joint work with Prof. Tony Heinz’s experimental group, wherein we demonstrate how excitonic effects on graphene can be tuned by carrier doping. Our work goes beyond the independent-particle picture, and includes, without adjustable parameters, the effect of finite quasiparticle lifetimes due to electron-electron and electron-phonon interactions on the optical absorption of graphene. The second project in this part - a collaboration with the experimental groups of Profs. Mike Crommie and Feng Wang - directly measures the exciton binding energy in MoSe2. Because these measurements are performed on a substrate of bilayer graphene, we develop a new method to include the effect of screening from the substrate into our ab initio formalism. Finally, the third joint theory-experiment work was a collaboration with Prof. Mike Crommie’s group, wherein we compute the quasiparticle properties of few-layer MoSe2 and simulate the corresponding scanning-tunneling spectroscopy curves. Our work shows how the electronic structure of MoSe2 evolves with layer number, and elucidates the role of layer hybridization, self-energy effects, and intrinsic/extrinsic screening in the quasiparticle properties of few-layer transition metal dichalcogenides.

Diverse Quasiparticle Properties of Emerging Materials

Download Diverse Quasiparticle Properties of Emerging Materials PDF Online Free

Author :
Release : 2022-10-07
Genre : Science
Kind : eBook
Book Rating : 647/5 ( reviews)

GET EBOOK


Book Synopsis Diverse Quasiparticle Properties of Emerging Materials by : Tran Thi Thu Hanh

Download or read book Diverse Quasiparticle Properties of Emerging Materials written by Tran Thi Thu Hanh. This book was released on 2022-10-07. Available in PDF, EPUB and Kindle. Book excerpt: Diverse Quasiparticle Properties of Emerging Materials: First-Principles Simulations thoroughly explores the rich and unique quasiparticle properties of emergent materials through a VASP-based theoretical framework. Evaluations and analyses are conducted on the crystal symmetries, electronic energy spectra/wave functions, spatial charge densities, van Hove singularities, magnetic moments, spin configurations, optical absorption structures with/without excitonic effects, quantum transports, and atomic coherent oscillations. Key Features Illustrates various quasiparticle phenomena, mainly covering orbital hybridizations and spin-up/spin-down configurations Mainly focuses on electrons and holes, in which their methods and techniques could be generalized to other quasiparticles, such as phonons and photons Considers such emerging materials as zigzag nanotubes, nanoribbons, germanene, plumbene, bismuth chalcogenide insulators Includes a section on applications of these materials This book is aimed at professionals and researchers in materials science, physics, and physical chemistry, as well as upper-level students in these fields.

You may also like...