Share

Many-body Effects on the Quasiparticle and Optical Properties of Quasi-two-dimensional Systems

Download Many-body Effects on the Quasiparticle and Optical Properties of Quasi-two-dimensional Systems PDF Online Free

Author :
Release : 2017
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Many-body Effects on the Quasiparticle and Optical Properties of Quasi-two-dimensional Systems by : Diana Y. Qiu

Download or read book Many-body Effects on the Quasiparticle and Optical Properties of Quasi-two-dimensional Systems written by Diana Y. Qiu. This book was released on 2017. Available in PDF, EPUB and Kindle. Book excerpt: Quasi-two-dimensional (quasi-2D) semiconductors are the subject of intense research interest as platforms for both developing atomically-thin devices and exploring novel physics. These are atomically-thin structured derived from layered materials with covalent bonding in each layer and weak coupling between layers so that individual monolayers can be easily peeled off. Changes in confinement and screening in reduced dimensions can lead to drastic changes in quasiparticle (QP) and optical properties when compared with bulk materials. In this dissertation, we use ab initio methods based on many-body perturbation theory (MBPT) to explain and predict the QP and optical properties of quasi-2D semiconductors. We describe the QP properties within the GW approximation, for single particle excitations, and the optical properties within the GW plus Bethe Salpeter equation (GW-BSE) approach, for two particle excitations, such as correlated electron-hole pairs, or excitons. We find that, in general, reduced dimensionality results in strong spatial variations in the screening of the Coulomb interaction as well as reduced total screening, allowing for strongly-bound, non-hydrogenic excitons. We then use this understanding to explore how changing the external screening environment through layering and substrate engineering can be used to tune properties of quasi-2D materials. Finally, we perform ab initio calculations of exciton dispersion in quasi-2D and show that the 2D Coulomb interaction can give rise to unusual, massless excitons. This dissertation is organized as follows: In chapter 1, we introduce the theoretical and computational techniques used to compute the QP and optical properties of real materials. In chapter 2, we calculate the QP bandstructure and optical spectrum of monolayer MoS2, a prototypical quasi-2D semiconductor. We find that monolayer MoS2 has very strongly-bound excitons, with binding energies that are two orders of magnitude larger than in the bulk. Moreover, we show that these excitons have excited states that do not follow the commonly used 2D hydrogenic model and that this strongly-bound, non-hydrogenic behavior arises as a consequence of fast spatial variations in the screening environment. For isolated systems, the screening is in fact diminished to zero in the limit of large distances compared to the layer thickness. The inhomogeneous screening found in quasi-low-dimensional systems introduces significant computational challenges because very fine spatial sampling is required to capture this variation in screening. In chapter 3, we develop new computational techniques to sample reciprocal space more efficiently, resulting in more than two orders of magnitude reductions in computational time for GW and GW-BSE calculations on low-dimensional systems. Based on our understanding of screening in MoS2, we then explore how screening from a substrate or capping layer might change the electronic and optical properties in other quasi-2D materials. In a joint experimental study, we find that a bilayer graphene substrate can renormalize the QP band gap and exciton binding energies in monolayer and few-layer transition metal dichalcogenides (TMDs) by as much as 30%. This work is discussed in chapters 4 and 5. In chapter 6, we discuss how the substrate screening effect is even more pronounced in black phosphorene, which has a lower intrinsic screening than TMDs. Consequently, encapsulation, which is commonly used to stabilize the material under ambient conditions, can completely eliminate the presence of bound excitons in few-layer systems, changing the optical spectrum qualitatively as well as quantitatively. Traditional implementations of the GW-BSE approach focus on excitons with zero center-of-mass momentum (Q), since these are the states probed by linear optical probes. However, exciton dispersion--energy as a function of Q--is essential to understanding properties such as exciton dynamics, lifetimes, and the formation of novel phases such as exciton condensates. In chapter 7, we implement GW-BSE for finite Q, and calculate the exciton bandstructure of MoS2. We find that, in general, the exchange interaction in 2D gives rise to a massless dispersion, while in MoS2 and other TMDs in particular, the interplay of the intervalley and intravalley exchange gives rise to a parabolic band and a massless, v-shaped band with a valley quantum phase of winding number two.

Quasiparticle and Optical Properties of Quasi-two-dimensional Systems

Download Quasiparticle and Optical Properties of Quasi-two-dimensional Systems PDF Online Free

Author :
Release : 2017
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Quasiparticle and Optical Properties of Quasi-two-dimensional Systems by : Felipe Homrich da Jornada

Download or read book Quasiparticle and Optical Properties of Quasi-two-dimensional Systems written by Felipe Homrich da Jornada. This book was released on 2017. Available in PDF, EPUB and Kindle. Book excerpt: Since the experimental isolation of graphene in 2004, there has been tremendous interest in studying quasi-two-dimensional (quasi-2D) systems. These atomically thin materials display a number of unique properties not found in their bulk counterparts, such as large self-energy and excitonic effects due to weaker screening in 2D. However, simple dimensionality arguments alone often fail to give quantitative - and sometimes qualitative - explanation of physical phenomena in these systems. Many low-energy excitation processes in these materials involve length scales comparable to the extent of these materials along the confined direction. Thus, many of these interesting properties are a result of the interplay of the physics of 2 and 3 dimensions. In order to predict quasiparticle and optical properties in these materials, it is therefore highly important to use methods that capture the explicit quasi-2D crystal structure and rely on as little experimental input as possible. Ab initio formalisms are well-tested, mature, and predictive methods for calculating physical properties of systems with arbitrary crystal structure and dimensionality. In particular, the ab initio GW and GW plus Bethe-Salpeter equation (BSE) approaches are reliable methods to compute quasiparticle and optical properties of materials without experimental parameters and for systems with arbitrary electronic structure and dimensionality. In this dissertation, we study the quasiparticle and optical properties of quasi-2D systems, with emphasis on graphene and monolayer transition metal dichalcogenides. This dissertation is divided into three parts. In the first part, we introduce the formalisms that allow us to compute quasiparticle and optical properties of material. We include a brief review of the quasiparticle approximation, and connect it to Green's function methods. We then introduce the GW approximation and the BSE as tools to compute quasiparticle and optical properties of materials, respectively. We include a simplified derivation of these two formalisms in terms of many-body perturbation theory and diagrammatic series. We also review how the GW approximation and the BSE are implemented into ab initio electronic-structure codes, such as BerkeleyGW. In the second part of the dissertation, we show our theoretical works on the quasiparticle and optical properties of quasi-2D systems. We compute the quasiparticle bandstructure, optical absorption spectrum, and excitonic series on monolayer MoS2, a prototypical quasi-2D semiconductor. We also understand the origin of novel physics in these materials, such as the presence of excitonic states that cannot be understood in terms of a 2D hydrogenic model. We understand these unique phenomena in terms of the unique features of the screening in 2D, and also show how this leads to severe challenges in applying the GW and GW-BSE approaches to system with reduced dimensionality. We then develop new methods that efficiently capture these fast variations of the screening, and reduce the computational cost of GW and GW-BSE approaches on these systems by orders of magnitude. Finally, in the third part of the dissertation, we show a variety of projects that are collabo- rations between our theoretical group at Berkeley and various experimental groups. In the first collaboration, we perform a joint work with Prof. Tony Heinz’s experimental group, wherein we demonstrate how excitonic effects on graphene can be tuned by carrier doping. Our work goes beyond the independent-particle picture, and includes, without adjustable parameters, the effect of finite quasiparticle lifetimes due to electron-electron and electron-phonon interactions on the optical absorption of graphene. The second project in this part - a collaboration with the experimental groups of Profs. Mike Crommie and Feng Wang - directly measures the exciton binding energy in MoSe2. Because these measurements are performed on a substrate of bilayer graphene, we develop a new method to include the effect of screening from the substrate into our ab initio formalism. Finally, the third joint theory-experiment work was a collaboration with Prof. Mike Crommie’s group, wherein we compute the quasiparticle properties of few-layer MoSe2 and simulate the corresponding scanning-tunneling spectroscopy curves. Our work shows how the electronic structure of MoSe2 evolves with layer number, and elucidates the role of layer hybridization, self-energy effects, and intrinsic/extrinsic screening in the quasiparticle properties of few-layer transition metal dichalcogenides.

Optical Properties of 2D Systems with Interacting Electrons

Download Optical Properties of 2D Systems with Interacting Electrons PDF Online Free

Author :
Release : 2012-12-06
Genre : Science
Kind : eBook
Book Rating : 786/5 ( reviews)

GET EBOOK


Book Synopsis Optical Properties of 2D Systems with Interacting Electrons by : Wolfgang J. Ossau

Download or read book Optical Properties of 2D Systems with Interacting Electrons written by Wolfgang J. Ossau. This book was released on 2012-12-06. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Research Workshop, held in St. Petersburg, Russia, 13-16 June 2002

Rich Quasiparticle Properties In Layered Graphene-related Systems

Download Rich Quasiparticle Properties In Layered Graphene-related Systems PDF Online Free

Author :
Release : 2023-12-27
Genre : Science
Kind : eBook
Book Rating : 80X/5 ( reviews)

GET EBOOK


Book Synopsis Rich Quasiparticle Properties In Layered Graphene-related Systems by : Ming-fa Lin

Download or read book Rich Quasiparticle Properties In Layered Graphene-related Systems written by Ming-fa Lin. This book was released on 2023-12-27. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book delves into the fascinating world of quasiparticle properties of graphene-related materials. The authors thoroughly explore the intricate effects of intrinsic and extrinsic interactions on the material's properties, while unifying the single-particle and many-particle properties through the development of a theoretical framework. The book covers a wide range of research topics, including long-range Coulomb interactions, dynamic charge density waves, Friedel oscillations and plasmon excitations, as well as optical reflection and transmission spectra of thin films. Also it highlights the crucial roles of inelastic Coulomb scattering and optical scattering in the quasiparticle properties of layered systems, and the impact of crystal symmetry, number of layers, and stacking configuration on their uniqueness. Furthermore, the authors explore the topological properties of quasiparticles, including 2D time-reversal-symmetry protected topological insulators with quantum spin Hall effect, and rhombohedral graphite with Dirac nodal lines. Meanwhile, the book examines the gate potential application for creating topological localized states and shows topological invariants of 2D Dirac fermions, and binary Z2 topological invariants under chiral symmetry. The calculated results are consistent with the present experimental observations, establishing it as a valuable resource for individuals interested in the quasiparticle properties of novel materials.

Rich Quasiparticle Properties of Low Dimensional Systems

Download Rich Quasiparticle Properties of Low Dimensional Systems PDF Online Free

Author :
Release : 2021
Genre : Carbon
Kind : eBook
Book Rating : 830/5 ( reviews)

GET EBOOK


Book Synopsis Rich Quasiparticle Properties of Low Dimensional Systems by : Dr Cheng-Hsueh Yang

Download or read book Rich Quasiparticle Properties of Low Dimensional Systems written by Dr Cheng-Hsueh Yang. This book was released on 2021. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the essential properties of carbon nanotubes and 2D graphene systems. The book focuses on the fundamental excitation properties of a large range of graphene-related materials, presenting a new theoretical framework that couples electronic properties and e-e Coulomb interactions together in order to thoroughly explore Coulomb excitations and decay rates in carbon-nanotube-related systems.

You may also like...