Share

Interface-engineered Ge MOSFETs for Future High Performance CMOS Applications

Download Interface-engineered Ge MOSFETs for Future High Performance CMOS Applications PDF Online Free

Author :
Release : 2009
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Interface-engineered Ge MOSFETs for Future High Performance CMOS Applications by : Duygu Kuzum

Download or read book Interface-engineered Ge MOSFETs for Future High Performance CMOS Applications written by Duygu Kuzum. This book was released on 2009. Available in PDF, EPUB and Kindle. Book excerpt: As the semiconductor industry approaches the limits of traditional silicon CMOS scaling, introduction of performance boosters like novel materials and innovative device structures has become necessary for the future of CMOS. High mobility materials are being considered to replace Si in the channel to achieve higher drive currents and switching speeds. Ge has particularly become of great interest as a channel material, owing to its high bulk hole and electron mobilities. However, replacement of Si channel by Ge requires several critical issues to be addressed in Ge MOS technology. High quality gate dielectric for surface passivation, low parasitic source/drain resistance and performance improvement in Ge NMOS are among the major challenges in realizing Ge CMOS. Detailed characterization of gate dielectric/channel interface and a deeper understanding of mobility degradation mechanisms are needed to address the Ge NMOS performance problem and to improve PMOS performance. In the first part of this dissertation, the electrical characterization results on Ge NMOS and PMOS devices fabricated with GeON gate dielectric are presented. Carrier scattering mechanisms are studied through low temperature mobility measurements. For the first time, the effect of substrate crystallographic orientation on inversion electron and hole mobilities is investigated. Direct formation of a high-k dielectric on Ge has not given good results in the past. A good quality interface layer is required before the deposition of a high-K dielectric. In the second part of this dissertation, ozone-oxidation process is introduced to engineer Ge/insulator interface. Electrical and structural characterizations and stability analysis are carried out and high quality Ge/dielectric interface with low interface trap density is demonstrated. Detailed extraction of interface trap density distribution across the bandgap and close to band edges of Ge, using low temperature conductance and capacitance measurements is presented. Ge N-MOSFETs have exhibited poor drive currents and low mobility, as reported by several different research groups worldwide. In spite of the increasing interest in Ge, the major mechanisms behind poor Ge NMOS performance have not been completely understood yet. In the last part of this dissertation, the results on Ge NMOS devices fabricated with the ozone-oxidation and the low temperature source/drain activation processes are discussed. These devices achieve the highest electron mobility to-date, about 1.5 times the universal Si mobility. Detailed interface characterizations, trapping analyses and gated Hall device measurements are performed to identify the mechanisms behind poor Ge NMOS performance in the past.

Design and Process for Three-dimensional Heterogeneous Integration

Download Design and Process for Three-dimensional Heterogeneous Integration PDF Online Free

Author :
Release : 2010
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Design and Process for Three-dimensional Heterogeneous Integration by : Shulu Chen

Download or read book Design and Process for Three-dimensional Heterogeneous Integration written by Shulu Chen. This book was released on 2010. Available in PDF, EPUB and Kindle. Book excerpt: Since the invention of the integrated circuit (IC) in the late 1950s, the semiconductor industry has experienced dramatic growth driven by both technology and manufacturing improvements. Over the past 40 years, the industry's growth trend has been predicted by Moore's law, and driven by the constant electrical field scaling design methodology. While the intrinsic performance of each device improves over generations, the corresponding interconnects do not. To alleviate this interconnect issue, a three-dimensional (3D) integration concept of transforming longer side to side interconnects into shorter vertical vias by using multiple active layers has attracted much attention. The focus of this thesis is on providing the foundation for 3D heterogeneous integration by investigating methods of growing single crystal materials on the silicon platform and the subsequent low-temperature process flow, through experimental demonstration, theoretical modeling and device structure simplification. First, thin film single crystal GaAs and GaSb were grown on dielectric layers on bulk silicon substrates by the rapid melt growth (RMG) method, using both rapid thermal annealing (RTA) and laser annealing. The relationship between stoichiometry and the crystal structure is discussed according to the theoretical phase diagram and the experimental results. A modified RMG structure is also proposed and demonstrated to solve the potential issue involved in integrating the RMG method into a three-dimensional integrated circuits (3D-IC) process with thick isolation layers. In order to estimate the outcome of the crystallization and to provide further understanding of the physics behind this RMG process, compact models are derived based on classical crystallization theory. Mathematical models including the geometry, the thermal environment and the outcome of the crystallization are built. The initial cooling rate is identified as the key factor for the RMG process. With the ability of integrating multiple materials on silicon substrates, the subsequent process flows using low-temperature-fabrication or simplified device structures are proposed and evaluated to achieve high density 3D integration. A "bonding substrate/monolithic contact" approach is proposed to relieve the thermal constraint from getting the starting single crystal layer without sacrificing the interconnect performance. A low-temperature process using germanium as the channel material is also discussed. Finally, gated thin film resistor structures are designed and compared to the conventional MOSFET structure with a focus on their relative performance and process complexity trade-off for future 3D-IC implementation.

Strain-Engineered MOSFETs

Download Strain-Engineered MOSFETs PDF Online Free

Author :
Release : 2018-10-03
Genre : Technology & Engineering
Kind : eBook
Book Rating : 475/5 ( reviews)

GET EBOOK


Book Synopsis Strain-Engineered MOSFETs by : C.K. Maiti

Download or read book Strain-Engineered MOSFETs written by C.K. Maiti. This book was released on 2018-10-03. Available in PDF, EPUB and Kindle. Book excerpt: Currently strain engineering is the main technique used to enhance the performance of advanced silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Written from an engineering application standpoint, Strain-Engineered MOSFETs introduces promising strain techniques to fabricate strain-engineered MOSFETs and to methods to assess the applications of these techniques. The book provides the background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOSFETs at nanoscale. This book focuses on recent developments in strain-engineered MOSFETS implemented in high-mobility substrates such as, Ge, SiGe, strained-Si, ultrathin germanium-on-insulator platforms, combined with high-k insulators and metal-gate. It covers the materials aspects, principles, and design of advanced devices, fabrication, and applications. It also presents a full technology computer aided design (TCAD) methodology for strain-engineering in Si-CMOS technology involving data flow from process simulation to process variability simulation via device simulation and generation of SPICE process compact models for manufacturing for yield optimization. Microelectronics fabrication is facing serious challenges due to the introduction of new materials in manufacturing and fundamental limitations of nanoscale devices that result in increasing unpredictability in the characteristics of the devices. The down scaling of CMOS technologies has brought about the increased variability of key parameters affecting the performance of integrated circuits. This book provides a single text that combines coverage of the strain-engineered MOSFETS and their modeling using TCAD, making it a tool for process technology development and the design of strain-engineered MOSFETs.

High Mobility Materials for CMOS Applications

Download High Mobility Materials for CMOS Applications PDF Online Free

Author :
Release : 2018-06-29
Genre : Technology & Engineering
Kind : eBook
Book Rating : 627/5 ( reviews)

GET EBOOK


Book Synopsis High Mobility Materials for CMOS Applications by : Nadine Collaert

Download or read book High Mobility Materials for CMOS Applications written by Nadine Collaert. This book was released on 2018-06-29. Available in PDF, EPUB and Kindle. Book excerpt: High Mobility Materials for CMOS Applications provides a comprehensive overview of recent developments in the field of (Si)Ge and III-V materials and their integration on Si. The book covers material growth and integration on Si, going all the way from device to circuit design. While the book's focus is on digital applications, a number of chapters also address the use of III-V for RF and analog applications, and in optoelectronics. With CMOS technology moving to the 10nm node and beyond, however, severe concerns with power dissipation and performance are arising, hence the need for this timely work on the advantages and challenges of the technology. Addresses each of the challenges of utilizing high mobility materials for CMOS applications, presenting possible solutions and the latest innovations Covers the latest advances in research on heterogeneous integration, gate stack, device design and scalability Provides a broad overview of the topic, from materials integration to circuits

Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications

Download Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications PDF Online Free

Author :
Release : 2013-10-19
Genre : Technology & Engineering
Kind : eBook
Book Rating : 632/5 ( reviews)

GET EBOOK


Book Synopsis Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications by : Jacopo Franco

Download or read book Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications written by Jacopo Franco. This book was released on 2013-10-19. Available in PDF, EPUB and Kindle. Book excerpt: Due to the ever increasing electric fields in scaled CMOS devices, reliability is becoming a showstopper for further scaled technology nodes. Although several groups have already demonstrated functional Si channel devices with aggressively scaled Equivalent Oxide Thickness (EOT) down to 5Å, a 10 year reliable device operation cannot be guaranteed anymore due to severe Negative Bias Temperature Instability. This book focuses on the reliability of the novel (Si)Ge channel quantum well pMOSFET technology. This technology is being considered for possible implementation in next CMOS technology nodes, thanks to its benefit in terms of carrier mobility and device threshold voltage tuning. We observe that it also opens a degree of freedom for device reliability optimization. By properly tuning the device gate stack, sufficiently reliable ultra-thin EOT devices with a 10 years lifetime at operating conditions are demonstrated. The extensive experimental datasets collected on a variety of processed 300mm wafers and presented here show the reliability improvement to be process - and architecture-independent and, as such, readily transferable to advanced device architectures as Tri-Gate (finFET) devices. We propose a physical model to understand the intrinsically superior reliability of the MOS system consisting of a Ge-based channel and a SiO2/HfO2 dielectric stack. The improved reliability properties here discussed strongly support (Si)Ge technology as a clear frontrunner for future CMOS technology nodes.

You may also like...