Share

Wide Bandgap Semiconductor Power Devices

Download Wide Bandgap Semiconductor Power Devices PDF Online Free

Author :
Release : 2018-10-17
Genre : Technology & Engineering
Kind : eBook
Book Rating : 073/5 ( reviews)

GET EBOOK


Book Synopsis Wide Bandgap Semiconductor Power Devices by : B. Jayant Baliga

Download or read book Wide Bandgap Semiconductor Power Devices written by B. Jayant Baliga. This book was released on 2018-10-17. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. - Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications - Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability - Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact

Wide Bandgap Semiconductor-based Electronics

Download Wide Bandgap Semiconductor-based Electronics PDF Online Free

Author :
Release : 2020
Genre : Gallium arsenide semiconductors
Kind : eBook
Book Rating : 165/5 ( reviews)

GET EBOOK


Book Synopsis Wide Bandgap Semiconductor-based Electronics by : Fan Ren

Download or read book Wide Bandgap Semiconductor-based Electronics written by Fan Ren. This book was released on 2020. Available in PDF, EPUB and Kindle. Book excerpt: "Advances in wide bandgap semiconductor materials are enabling the development of a new generation of power semiconductor devices that far exceed the performance of silicon-based devices. These technologies offer potential breakthrough performance for a wide range of applications, including high-power and RF electronics, deep-UV optoelectronics, quantum information and extreme-environment applications. This reference text provides comprehensive coverage of the challenges and latest research in wide and ultra-wide bandgap semiconductors. Leading researchers from around the world provide reviews on the latest development of materials and devices in these systems. The book is an essential reference for researchers and practitioners in the field of wide bandgap semiconductors and power electronics, and valuable supplementary reading for advanced courses in these areas." -- Prové de l'editor.

Wide-bandgap Semiconductors for Next-generation Power Electronics Systems

Download Wide-bandgap Semiconductors for Next-generation Power Electronics Systems PDF Online Free

Author :
Release : 2020
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Wide-bandgap Semiconductors for Next-generation Power Electronics Systems by : Grayson Zulauf

Download or read book Wide-bandgap Semiconductors for Next-generation Power Electronics Systems written by Grayson Zulauf. This book was released on 2020. Available in PDF, EPUB and Kindle. Book excerpt: Wide-bandgap power semiconductors promise to reshape the power electronics landscape, opening completely new use cases and increasing efficiency and power density in existing ones. Most notably, gallium nitride (GaN) and silicon carbide (SiC) were successfully commercialized in the past decades, with theoretical benefits over silicon of multiple orders-of-magnitude. When combined with soft-switching techniques and topologies, these wide-bandgap materials have the potential to move power conversion to MHz operating frequencies, radically shrinking power converters and enabling new fabrication methods with the frequency-driven reduction of passive component requirements. Unfortunately, soft-switched converters built at MHz frequencies have consistently underperformed their modeled efficiency, as this work shows for three DC-RF inverters at high- and very-high-frequency. These inverters have measured semiconductor losses nearly an order-of-magnitude greater than expected from manufacturer-provided simulation models, a discrepancy that demands investigation. These losses are attributed to the process of resonantly charging and discharging the output capacitance (Coss) of the power semiconductors, a loss mechanism termed "soft-switching losses" or "Coss losses." Our measurements constitute the first recognition of this problem in GaN HEMTs, and these initial measurements are then extended to SiC and Si MOSFETs, finding dependencies and scaling laws for each device class. To complete the understanding of losses at high-frequencies, the well-understood phenomenon in GaN HEMTs of dynamic on-resistance is then revisited. Our work conclusively shows that dynamic on-resistance cannot be accurately characterized using the standardized double-pulse-test, and uses the underlying physics to determine the parameters that must be controlled for accurate reporting. Using this measurement framework, this work extends the dynamic on-resistance measurements to MHz frequencies for the first time, finding that the majority of the dynamic effects in soft-switched converters occur below 1 MHz for the tested device. With both off-state and on-state losses precisely understood at MHz frequencies, the promise of high-frequency power conversion can finally be realized. While adopted widely in cell phones, inductive wireless power transfer for higher-value applications (e.g. electric vehicles) is beset by both low performance and high cost due to the limitations of litz wire. At 6.78 MHz, the first international industrial, scientific, and medical (ISM) band above 200 kHz, litz wire can be completely eliminated, paving the way to low cost, small, light, and high-performance systems. A 1 kW DC-DC converter that transfers power across a 2 cm gap with 6.6 cm diameter coils at over 95% efficiency is demonstrated, a new benchmark in power density and efficiency for MHz-frequency wireless power transfer. This performance would, plainly, not have been possible without the identification and quantification of Coss losses. Our future power, transportation, and computing infrastructures are dependent on the implementation of wide-bandgap power semiconductors to reduce size, weight, and cost while increasing efficiency to address the climate challenge. This thesis is our small contribution to meaningfully improving these semiconductors and showing what's possible for the next generation of power conversion.

Wide Bandgap Semiconductors for Power Electronics

Download Wide Bandgap Semiconductors for Power Electronics PDF Online Free

Author :
Release : 2022-01-10
Genre : Technology & Engineering
Kind : eBook
Book Rating : 716/5 ( reviews)

GET EBOOK


Book Synopsis Wide Bandgap Semiconductors for Power Electronics by : Peter Wellmann

Download or read book Wide Bandgap Semiconductors for Power Electronics written by Peter Wellmann. This book was released on 2022-01-10. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Semiconductors for Power Electronic A guide to the field of wide bandgap semiconductor technology Wide Bandgap Semiconductors for Power Electronics is a comprehensive and authoritative guide to wide bandgap materials silicon carbide, gallium nitride, diamond and gallium(III) oxide. With contributions from an international panel of experts, the book offers detailed coverage of the growth of these materials, their characterization, and how they are used in a variety of power electronics devices such as transistors and diodes and in the areas of quantum information and hybrid electric vehicles. The book is filled with the most recent developments in the burgeoning field of wide bandgap semiconductor technology and includes information from cutting-edge semiconductor companies as well as material from leading universities and research institutions. By taking both scholarly and industrial perspectives, the book is designed to be a useful resource for scientists, academics, and corporate researchers and developers. This important book: Presents a review of wide bandgap materials and recent developments Links the high potential of wide bandgap semiconductors with the technological implementation capabilities Offers a unique combination of academic and industrial perspectives Meets the demand for a resource that addresses wide bandgap materials in a comprehensive manner Written for materials scientists, semiconductor physicists, electrical engineers, Wide Bandgap Semiconductors for Power Electronics provides a state of the art guide to the technology and application of SiC and related wide bandgap materials.

Next Generation Integrated Behavioral and Physics-based Modeling of Wide Bandgap Semiconductor Devices for Power Electronics

Download Next Generation Integrated Behavioral and Physics-based Modeling of Wide Bandgap Semiconductor Devices for Power Electronics PDF Online Free

Author :
Release : 2019
Genre : Semiconductors
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Next Generation Integrated Behavioral and Physics-based Modeling of Wide Bandgap Semiconductor Devices for Power Electronics by : Michael Robert Hontz

Download or read book Next Generation Integrated Behavioral and Physics-based Modeling of Wide Bandgap Semiconductor Devices for Power Electronics written by Michael Robert Hontz. This book was released on 2019. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation investigates the modeling of next generation wide bandgap semiconductors in several domains. The first model developed is of a GaN Schottky diode with a unique AlGaN cap layer. This model is developed using fundamental physical laws and analysis and allows for the characteristics of the diode to be designed by adjusting aspects of the diode's fabrication and structure. The second model is of a lateral GaN HEMT and is developed using TCAD simulation software in order to fit experimental data based on static characteristics. This procedure endeavors to simultaneously fit several output characteristics of the HEMT device to facilitate the applicability and evaluation of the device for power electronics applications. This model is then used to analyze the effects of various substrate material choices on the performance of the GaN HEMT in a switching application. Finally, a link between TCAD models of devices and a circuit simulation platform is demonstrated. This system allows for simulation and testing of devices in complex power electronic systems while maintaining a direct dependence between the system-level performance and the physical parameters of the device. This link between TCAD and circuit simulation is then used to develop an iterative optimization procedure to design a semiconductor device for a particular power electronic application. The work demonstrated here develops procedures to create high-fidelity models of wide bandgap semiconductor devices and enables the purposeful design of devices for their intended application with a high degree of confidence in meeting system requirements. It is through this focusing of device modeling and design, that the rate of technological transfer of next-generation semiconductor devices to power electronics systems can be improved.

You may also like...