Share

Timing Performance of Nanometer Digital Circuits Under Process Variations

Download Timing Performance of Nanometer Digital Circuits Under Process Variations PDF Online Free

Author :
Release : 2018-04-18
Genre : Technology & Engineering
Kind : eBook
Book Rating : 653/5 ( reviews)

GET EBOOK


Book Synopsis Timing Performance of Nanometer Digital Circuits Under Process Variations by : Victor Champac

Download or read book Timing Performance of Nanometer Digital Circuits Under Process Variations written by Victor Champac. This book was released on 2018-04-18. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the digital design of integrated circuits under process variations, with a focus on design-time solutions. The authors describe a step-by-step methodology, going from logic gates to logic paths to the circuit level. Topics are presented in comprehensively, without overwhelming use of analytical formulations. Emphasis is placed on providing digital designers with understanding of the sources of process variations, their impact on circuit performance and tools for improving their designs to comply with product specifications. Various circuit-level “design hints” are highlighted, so that readers can use then to improve their designs. A special treatment is devoted to unique design issues and the impact of process variations on the performance of FinFET based circuits. This book enables readers to make optimal decisions at design time, toward more efficient circuits, with better yield and higher reliability.

Design of Variation-tolerant Circuits for Nanometer CMOS Technology

Download Design of Variation-tolerant Circuits for Nanometer CMOS Technology PDF Online Free

Author :
Release : 2008
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Design of Variation-tolerant Circuits for Nanometer CMOS Technology by : Mohamed Hassan Abu-Rahma

Download or read book Design of Variation-tolerant Circuits for Nanometer CMOS Technology written by Mohamed Hassan Abu-Rahma. This book was released on 2008. Available in PDF, EPUB and Kindle. Book excerpt: Aggressive scaling of CMOS technology in sub-90nm nodes has created huge challenges. Variations due to fundamental physical limits, such as random dopants fluctuation (RDF) and line edge roughness (LER) are increasing significantly with technology scaling. In addition, manufacturing tolerances in process technology are not scaling at the same pace as transistor's channel length due to process control limitations (e.g., sub-wavelength lithography). Therefore, within-die process variations worsen with successive technology generations. These variations have a strong impact on the maximum clock frequency and leakage power for any digital circuit, and can also result in functional yield losses in variation-sensitive digital circuits (such as SRAM). Moreover, in nanometer technologies, digital circuits show an increased sensitivity to process variations due to low-voltage operation requirements, which are aggravated by the strong demand for lower power consumption and cost while achieving higher performance and density. It is therefore not surprising that the International Technology Roadmap for Semiconductors (ITRS) lists variability as one of the most challenging obstacles for IC design in nanometer regime. To facilitate variation-tolerant design, we study the impact of random variations on the delay variability of a logic gate and derive simple and scalable statistical models to evaluate delay variations in the presence of within-die variations. This work provides new design insight and highlights the importance of accounting for the effect of input slew on delay variations, especially at lower supply voltages.

Static Timing Analysis for Nanometer Designs

Download Static Timing Analysis for Nanometer Designs PDF Online Free

Author :
Release : 2009-04-03
Genre : Technology & Engineering
Kind : eBook
Book Rating : 206/5 ( reviews)

GET EBOOK


Book Synopsis Static Timing Analysis for Nanometer Designs by : J. Bhasker

Download or read book Static Timing Analysis for Nanometer Designs written by J. Bhasker. This book was released on 2009-04-03. Available in PDF, EPUB and Kindle. Book excerpt: iming, timing, timing! That is the main concern of a digital designer charged with designing a semiconductor chip. What is it, how is it T described, and how does one verify it? The design team of a large digital design may spend months architecting and iterating the design to achieve the required timing target. Besides functional verification, the t- ing closure is the major milestone which dictates when a chip can be - leased to the semiconductor foundry for fabrication. This book addresses the timing verification using static timing analysis for nanometer designs. The book has originated from many years of our working in the area of timing verification for complex nanometer designs. We have come across many design engineers trying to learn the background and various aspects of static timing analysis. Unfortunately, there is no book currently ava- able that can be used by a working engineer to get acquainted with the - tails of static timing analysis. The chip designers lack a central reference for information on timing, that covers the basics to the advanced timing veri- cation procedures and techniques.

Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation

Download Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation PDF Online Free

Author :
Release : 2009-01-30
Genre : Computers
Kind : eBook
Book Rating : 483/5 ( reviews)

GET EBOOK


Book Synopsis Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation by : Lars Svensson

Download or read book Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation written by Lars Svensson. This book was released on 2009-01-30. Available in PDF, EPUB and Kindle. Book excerpt: Welcome to the proceedings of PATMOS 2008, the 18th in a series of int- national workshops. PATMOS 2008 was organized by INESC-ID / IST - TU Lisbon, Portugal, with sponsorship by Cadence, IBM, Chipidea, and Tecmic, and technical co-sponsorship by the IEEE. Over the years, PATMOS has evolved into an important European event, where researchers from both industry and academia discuss and investigate the emerging challenges in future and contemporary applications, design meth- ologies, and tools required for the development of the upcoming generations of integrated circuits and systems. The technical program of PATMOS 2008 c- tained state-of-the-art technical contributions, three invited talks, and a special session on recon?gurable architectures. The technical program focused on t- ing, performance and power consumption, as well as architectural aspects with particular emphasis on modeling, design, characterization, analysis and op- mization in the nanometer era. The Technical Program Committee, with the assistance of additional expert reviewers, selected the 41 papers presented at PATMOS. The papers were - ganized into 7 oral sessions (with a total of 31 papers) and 2 poster sessions (with a total of 10 papers). As is customary for the PATMOS workshops, full papers were required for review, and a minimum of three reviews were received per manuscript.

Robust Design of Variation-sensitive Digital Circuits

Download Robust Design of Variation-sensitive Digital Circuits PDF Online Free

Author :
Release : 2011
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Robust Design of Variation-sensitive Digital Circuits by : Hassan Mostafa

Download or read book Robust Design of Variation-sensitive Digital Circuits written by Hassan Mostafa. This book was released on 2011. Available in PDF, EPUB and Kindle. Book excerpt: The nano-age has already begun, where typical feature dimensions are smaller than 100nm. The operating frequency is expected to increase up to 12 GHz, and a single chip will contain over 12 billion transistors in 2020, as given by the International Technology Roadmap for Semiconductors (ITRS) initiative. ITRS also predicts that the scaling of CMOS devices and process technology, as it is known today, will become much more difficult as the industry advances towards the 16nm technology node and further. This aggressive scaling of CMOS technology has pushed the devices to their physical limits. Design goals are governed by several factors other than power, performance and area such as process variations, radiation induced soft errors, and aging degradation mechanisms. These new design challenges have a strong impact on the parametric yield of nanometer digital circuits and also result in functional yield losses in variation-sensitive digital circuits such as Static Random Access Memory (SRAM) and flip-flops. Moreover, sub-threshold SRAM and flip-flops circuits, which are aggravated by the strong demand for lower power consumption, show larger sensitivity to these challenges which reduces their robustness and yield. Accordingly, it is not surprising that the ITRS considers variability and reliability as the most challenging obstacles for nanometer digital circuits robust design. Soft errors are considered one of the main reliability and robustness concerns in SRAM arrays in sub-100nm technologies due to low operating voltage, small node capacitance, and high packing density. The SRAM arrays soft errors immunity is also affected by process variations. We develop statistical design-oriented soft errors immunity variations models for super-threshold and sub-threshold SRAM cells accounting for die-to-die variations and within-die variations. This work provides new design insights and highlights the important design knobs that can be used to reduce the SRAM cells soft errors immunity variations. The developed models are scalable, bias dependent, and only require the knowledge of easily measurable parameters. This makes them useful in early design exploration, circuit optimization as well as technology prediction. The derived models are verified using Monte Carlo SPICE simulations, referring to an industrial hardware-calibrated 65nm CMOS technology. The demand for higher performance leads to very deep pipelining which means that hundreds of thousands of flip-flops are required to control the data flow under strict timing constraints. A violation of the timing constraints at a flip-flop can result in latching incorrect data causing the overall system to malfunction. In addition, the flip-flops power dissipation represents a considerable fraction of the total power dissipation. Sub-threshold flip-flops are considered the most energy efficient solution for low power applications in which, performance is of secondary importance. Accordingly, statistical gate sizing is conducted to different flip-flops topologies for timing yield improvement of super-threshold flip-flops and power yield improvement of sub-threshold flip-flops. Following that, a comparative analysis between these flip-flops topologies considering the required overhead for yield improvement is performed. This comparative analysis provides useful recommendations that help flip-flops designers on selecting the best flip-flops topology that satisfies their system specifications while taking the process variations impact and robustness requirements into account. Adaptive Body Bias (ABB) allows the tuning of the transistor threshold voltage, Vt, by controlling the transistor body voltage. A forward body bias reduces Vt, increasing the device speed at the expense of increased leakage power. Alternatively, a reverse body bias increases Vt, reducing the leakage power but slowing the device. Therefore, the impact of process variations is mitigated by speeding up slow and less leaky devices or slowing down devices that are fast and highly leaky. Practically, the implementation of the ABB is desirable to bias each device in a design independently, to mitigate within-die variations. However, supplying so many separate voltages inside a die results in a large area overhead. On the other hand, using the same body bias for all devices on the same die limits its capability to compensate for within-die variations. Thus, the granularity level of the ABB scheme is a trade-off between the within-die variations compensation capability and the associated area overhead. This work introduces new ABB circuits that exhibit lower area overhead by a factor of 143X than that of previous ABB circuits. In addition, these ABB circuits are resolution free since no digital-to-analog converters or analog-to-digital converters are required on their implementations. These ABB circuits are adopted to high performance critical paths, emulating a real microprocessor architecture, for process variations compensation and also adopted to SRAM arrays, for Negative Bias Temperature Instability (NBTI) aging and process variations compensation. The effectiveness of the new ABB circuits is verified by post layout simulation results and test chip measurements using triple-well 65nm CMOS technology. The highly capacitive nodes of wide fan-in dynamic circuits and SRAM bitlines limit the performance of these circuits. In addition, process variations mitigation by statistical gate sizing increases this capacitance further and fails in achieving the target yield improvement. We propose new negative capacitance circuits that reduce the overall parasitic capacitance of these highly capacitive nodes. These negative capacitance circuits are adopted to wide fan-in dynamic circuits for timing yield improvement up to 99.87% and to SRAM arrays for read access yield improvement up to 100%. The area and power overheads of these new negative capacitance circuits are amortized over the large die area of the microprocessor and the SRAM array. The effectiveness of the new negative capacitance circuits is verified by post layout simulation results and test chip measurements using 65nm CMOS technology.

You may also like...