Share

TIME-SERIES ANALYSIS: FORECASTING STOCK PRICE USING MACHINE LEARNING WITH PYTHON GUI

Download TIME-SERIES ANALYSIS: FORECASTING STOCK PRICE USING MACHINE LEARNING WITH PYTHON GUI PDF Online Free

Author :
Release : 2023-07-02
Genre : Computers
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis TIME-SERIES ANALYSIS: FORECASTING STOCK PRICE USING MACHINE LEARNING WITH PYTHON GUI by : Vivian Siahaan

Download or read book TIME-SERIES ANALYSIS: FORECASTING STOCK PRICE USING MACHINE LEARNING WITH PYTHON GUI written by Vivian Siahaan. This book was released on 2023-07-02. Available in PDF, EPUB and Kindle. Book excerpt: Stock trading and financial instrument markets offer significant opportunities for wealth creation. The ability to predict stock price movements has long intrigued researchers and investors alike. While some theories, like the Efficient Market Hypothesis, suggest that consistently beating the market is nearly impossible, others contest this viewpoint. Stock price prediction involves forecasting the future value of a given stock. In this project, we focus on the S&P 500 Index, which consists of 500 stocks from various sectors of the US economy and serves as a key indicator of US equities. To tackle this task, we utilize the Yahoo stock price history dataset, which contains 1825 rows and 7 columns including Date, High, Low, Open, Close, Volume, and Adj Close. To enhance our predictions, we incorporate technical indicators such as daily returns, Moving Average Convergence-Divergence (MACD), Relative Strength Index (RSI), Simple Moving Average (SMA), lower and upper bands, and standard deviation. In this book, for the forecasting task, we employ various regression algorithms including Linear Regression, Random Forest Regression, Decision Tree Regression, Support Vector Regression, Naïve Bayes Regression, K-Nearest Neighbor Regression, Adaboost Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, Catboost Regression, MLP Regression, Lasso Regression, and Ridge Regression. These models aim to predict the future Adj Close price of the stock based on historical data. In addition to stock price prediction, we also delve into predicting stock daily returns using machine learning models. We utilize K-Nearest Neighbor Classifier, Random Forest Classifier, Naive Bayes Classifier, Logistic Regression Classifier, Decision Tree Classifier, Support Vector Machine Classifier, LGBM Classifier, Gradient Boosting Classifier, XGB Classifier, MLP Classifier, and Extra Trees Classifier. These models are trained to predict the direction of daily stock returns (positive or negative) based on various features and technical indicators. To assess the performance of these machine learning models, we evaluate several important metrics. Accuracy measures the overall correctness of the predictions, while recall quantifies the ability to correctly identify positive cases (upward daily returns). Precision evaluates the precision of positive predictions, and the F1 score provides a balanced measure of precision and recall. Additionally, we consider macro average, which calculates the average metric value across all classes, and weighted average, which provides a balanced representation considering class imbalances. To enhance the user experience and facilitate data exploration, we develop a graphical user interface (GUI). The GUI is built using PyQt and offers an interactive platform for users to visualize and interact with the data. It provides features such as plotting boundary decisions, visualizing feature distributions and importance, comparing predicted values with true values, displaying confusion matrices, learning curves, model performance, and scalability analysis. The GUI allows users to customize the analysis by selecting different models, time periods, or variables of interest, making it accessible and user-friendly for individuals without extensive programming knowledge. The combination of exploring the dataset, forecasting stock prices, predicting daily returns, and developing a GUI creates a comprehensive framework for analyzing and understanding stock market trends. By leveraging machine learning algorithms and evaluating performance metrics, we gain valuable insights into the accuracy and effectiveness of our predictions. The GUI further enhances the accessibility and usability of the analysis, enabling users to make data-driven decisions and explore the stock market with ease.

GOOGLE STOCK PRICE: TIME-SERIES ANALYSIS, VISUALIZATION, FORECASTING, AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI

Download GOOGLE STOCK PRICE: TIME-SERIES ANALYSIS, VISUALIZATION, FORECASTING, AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI PDF Online Free

Author :
Release : 2023-06-11
Genre : Computers
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis GOOGLE STOCK PRICE: TIME-SERIES ANALYSIS, VISUALIZATION, FORECASTING, AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI by : Vivian Siahaan

Download or read book GOOGLE STOCK PRICE: TIME-SERIES ANALYSIS, VISUALIZATION, FORECASTING, AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI written by Vivian Siahaan. This book was released on 2023-06-11. Available in PDF, EPUB and Kindle. Book excerpt: Google, officially known as Alphabet Inc., is an American multinational technology company. It was founded in September 1998 by Larry Page and Sergey Brin while they were Ph.D. students at Stanford University. Initially, it started as a research project to develop a search engine, but it rapidly grew into one of the largest and most influential technology companies in the world. Google is primarily known for its internet-related services and products, with its search engine being its most well-known offering. It revolutionized the way people access information by providing a fast and efficient search engine that delivers highly relevant results. Over the years, Google expanded its portfolio to include a wide range of products and services, including Google Maps, Google Drive, Gmail, Google Docs, Google Photos, Google Chrome, YouTube, and many more. In addition to its internet services, Google ventured into hardware with products like the Google Pixel smartphones, Google Home smart speakers, and Google Nest smart home devices. It also developed its own operating system called Android, which has become the most widely used mobile operating system globally. Google's success can be attributed to its ability to monetize its services through online advertising. The company introduced Google AdWords, a highly successful online advertising program that enables businesses to display ads on Google's search engine and other websites through its AdSense program. Advertising contributes significantly to Google's revenue, along with other sources such as cloud services, app sales, and licensing fees. The dataset used in this project starts from 19-Aug-2004 and is updated till 11-Oct-2021. It contains 4317 rows and 7 columns. The columns in the dataset are Date, Open, High, Low, Close, Adj Close, and Volume. You can download the dataset from https://viviansiahaan.blogspot.com/2023/06/google-stock-price-time-series-analysis.html. In this project, you will involve technical indicators such as daily returns, Moving Average Convergence-Divergence (MACD), Relative Strength Index (RSI), Simple Moving Average (SMA), lower and upper bands, and standard deviation. In this book, you will learn how to perform forecasting based on regression on Adj Close price of Google stock price, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, MLP regression, Lasso regression, and Ridge regression. The machine learning models used to predict Google daily returns as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, MLP classifier, and Extra Trees classifier. Finally, you will develop GUI to plot boundary decision, distribution of features, feature importance, predicted values versus true values, confusion matrix, learning curve, performance of the model, and scalability of the model.

Applied Time Series Analysis and Forecasting with Python

Download Applied Time Series Analysis and Forecasting with Python PDF Online Free

Author :
Release : 2022-10-19
Genre : Mathematics
Kind : eBook
Book Rating : 849/5 ( reviews)

GET EBOOK


Book Synopsis Applied Time Series Analysis and Forecasting with Python by : Changquan Huang

Download or read book Applied Time Series Analysis and Forecasting with Python written by Changquan Huang. This book was released on 2022-10-19. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents methods and techniques for time series analysis and forecasting and shows how to use Python to implement them and solve data science problems. It covers not only common statistical approaches and time series models, including ARMA, SARIMA, VAR, GARCH and state space and Markov switching models for (non)stationary, multivariate and financial time series, but also modern machine learning procedures and challenges for time series forecasting. Providing an organic combination of the principles of time series analysis and Python programming, it enables the reader to study methods and techniques and practice writing and running Python code at the same time. Its data-driven approach to analyzing and modeling time series data helps new learners to visualize and interpret both the raw data and its computed results. Primarily intended for students of statistics, economics and data science with an undergraduate knowledge of probability and statistics, the book will equally appeal to industry professionals in the fields of artificial intelligence and data science, and anyone interested in using Python to solve time series problems.

Modern Time Series Forecasting with Python

Download Modern Time Series Forecasting with Python PDF Online Free

Author :
Release : 2022-11-24
Genre : Computers
Kind : eBook
Book Rating : 048/5 ( reviews)

GET EBOOK


Book Synopsis Modern Time Series Forecasting with Python by : Manu Joseph

Download or read book Modern Time Series Forecasting with Python written by Manu Joseph. This book was released on 2022-11-24. Available in PDF, EPUB and Kindle. Book excerpt: Build real-world time series forecasting systems which scale to millions of time series by applying modern machine learning and deep learning concepts Key Features Explore industry-tested machine learning techniques used to forecast millions of time series Get started with the revolutionary paradigm of global forecasting models Get to grips with new concepts by applying them to real-world datasets of energy forecasting Book DescriptionWe live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML. This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You’ll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you’ll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability. By the end of this book, you’ll be able to build world-class time series forecasting systems and tackle problems in the real world.What you will learn Find out how to manipulate and visualize time series data like a pro Set strong baselines with popular models such as ARIMA Discover how time series forecasting can be cast as regression Engineer features for machine learning models for forecasting Explore the exciting world of ensembling and stacking models Get to grips with the global forecasting paradigm Understand and apply state-of-the-art DL models such as N-BEATS and Autoformer Explore multi-step forecasting and cross-validation strategies Who this book is for The book is for data scientists, data analysts, machine learning engineers, and Python developers who want to build industry-ready time series models. Since the book explains most concepts from the ground up, basic proficiency in Python is all you need. Prior understanding of machine learning or forecasting will help speed up your learning. For experienced machine learning and forecasting practitioners, this book has a lot to offer in terms of advanced techniques and traversing the latest research frontiers in time series forecasting.

DATA VISUALIZATION, TIME-SERIES FORECASTING, AND PREDICTION USING MACHINE LEARNING WITH TKINTER

Download DATA VISUALIZATION, TIME-SERIES FORECASTING, AND PREDICTION USING MACHINE LEARNING WITH TKINTER PDF Online Free

Author :
Release : 2023-09-06
Genre : Computers
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis DATA VISUALIZATION, TIME-SERIES FORECASTING, AND PREDICTION USING MACHINE LEARNING WITH TKINTER by : Vivian Siahaan

Download or read book DATA VISUALIZATION, TIME-SERIES FORECASTING, AND PREDICTION USING MACHINE LEARNING WITH TKINTER written by Vivian Siahaan. This book was released on 2023-09-06. Available in PDF, EPUB and Kindle. Book excerpt: This "Data Visualization, Time-Series Forecasting, and Prediction using Machine Learning with Tkinter" project is a comprehensive and multifaceted application that leverages data visualization, time-series forecasting, and machine learning techniques to gain insights into bitcoin data and make predictions. This project serves as a valuable tool for financial analysts, traders, and investors seeking to make informed decisions in the stock market. The project begins with data visualization, where historical bitcoin market data is visually represented using various plots and charts. This provides users with an intuitive understanding of the data's trends, patterns, and fluctuations. Features distribution analysis is conducted to assess the statistical properties of the dataset, helping users identify key characteristics that may impact forecasting and prediction. One of the project's core functionalities is time-series forecasting. Through a user-friendly interface built with Tkinter, users can select a stock symbol and specify the time horizon for forecasting. The project supports multiple machine learning regressors, such as Linear Regression, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Multi-Layer Perceptron, Lasso, Ridge, AdaBoost, and KNN, allowing users to choose the most suitable algorithm for their forecasting needs. Time-series forecasting is crucial for making predictions about stock prices, which is essential for investment strategies. The project employs various machine learning regressors to predict the adjusted closing price of bitcoin stock. By training these models on historical data, users can obtain predictions for future adjusted closing prices. This information is invaluable for traders and investors looking to make buy or sell decisions. The project also incorporates hyperparameter tuning and cross-validation to enhance the accuracy of these predictions. These models employ metrics such as Mean Absolute Error (MAE), which quantifies the average absolute discrepancy between predicted values and actual values. Lower MAE values signify superior model performance. Additionally, Mean Squared Error (MSE) is used to calculate the average squared differences between predicted and actual values, with lower MSE values indicating better model performance. Root Mean Squared Error (RMSE), derived from MSE, provides insights in the same units as the target variable and is valued for its lower values, denoting superior performance. Lastly, R-squared (R2) evaluates the fraction of variance in the target variable that can be predicted from independent variables, with higher values signifying better model fit. An R2 of 1 implies a perfect model fit. In addition to close price forecasting, the project extends its capabilities to predict daily returns. By implementing grid search, users can fine-tune the hyperparameters of machine learning models such as Random Forests, Gradient Boosting, Support Vector, Decision Tree, Gradient Boosting, Extreme Gradient Boosting, Multi-Layer Perceptron, and AdaBoost Classifiers. This optimization process aims to maximize the predictive accuracy of daily returns. Accurate daily return predictions are essential for assessing risk and formulating effective trading strategies. Key metrics in these classifiers encompass Accuracy, which represents the ratio of correctly predicted instances to the total number of instances, Precision, which measures the proportion of true positive predictions among all positive predictions, and Recall (also known as Sensitivity or True Positive Rate), which assesses the proportion of true positive predictions among all actual positive instances. The F1-Score serves as the harmonic mean of Precision and Recall, offering a balanced evaluation, especially when considering the trade-off between false positives and false negatives. The ROC Curve illustrates the trade-off between Recall and False Positive Rate, while the Area Under the ROC Curve (AUC-ROC) summarizes this trade-off. The Confusion Matrix provides a comprehensive view of classifier performance by detailing true positives, true negatives, false positives, and false negatives, facilitating the computation of various metrics like accuracy, precision, and recall. The selection of these metrics hinges on the project's specific objectives and the characteristics of the dataset, ensuring alignment with the intended goals and the ramifications of false positives and false negatives, which hold particular significance in financial contexts where decisions can have profound consequences. Overall, the "Data Visualization, Time-Series Forecasting, and Prediction using Machine Learning with Tkinter" project serves as a powerful and user-friendly platform for financial data analysis and decision-making. It bridges the gap between complex machine learning techniques and accessible user interfaces, making financial analysis and prediction more accessible to a broader audience. With its comprehensive features, this project empowers users to gain insights from historical data, make informed investment decisions, and develop effective trading strategies in the dynamic world of finance. You can download the dataset from: http://viviansiahaan.blogspot.com/2023/09/data-visualization-time-series.html.

You may also like...