Share

Silicon Integrated Neuromorphic Neural Interfaces

Download Silicon Integrated Neuromorphic Neural Interfaces PDF Online Free

Author :
Release : 2019
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Silicon Integrated Neuromorphic Neural Interfaces by : Jun Wang

Download or read book Silicon Integrated Neuromorphic Neural Interfaces written by Jun Wang. This book was released on 2019. Available in PDF, EPUB and Kindle. Book excerpt: Neuromorphic engineering pursues the design of electronic systems emulating function and structural organization of biological neural systems in silicon integrated circuits that embody similar physical principles. The work in this dissertation extends neuromorphic engineering to neural interfaces that directly couple biological neurons to their equivalents in silicon integrated circuits, dynamically probing their function through silicon emulation of biophysical chemical and electrical synapses. Our aim in this work is to enable study of hybrid networks of biological and silicon neurons with highly configurable topology and biophysically based properties, providing windows on the inner workings of biological neural circuits from the cellular to the network levels, and hence promoting new synergies between theory in computational neuroscience and experimentation in systems neuroscience. In the first part, membrane dynamics and ion channel kinetics of biological neurons, obtained from experimental electrophysiological data, were accurately mapped onto equivalent continuous-time analog dynamics in NeuroDyn, a highly reconfigurable neuromorphic silicon microchip. To this end, songbird individual neuron dynamics from intracellular neural recordings were extracted, modeled, and then mapped onto silicon neurons in NeuroDyn by data assimilation to estimate and configure biophysical parameters. Further, the NeuroDyn framework was extended to serve as a versatile tool for biophysical dynamic clamp electrophysiology, connecting biological and silicon neurons through synthetic virtual chemical synapses. To this end, the response properties of five different types of chemical synapses, including both excitatory (AMPA, NMDA) and inhibitory (GABAA, GABAC, Glycine) ionotropic receptors were reproduced with neuromorphic integrated circuits. In addition, electrical synapses (gap junctions) were emulated in a network of four silicon neurons. The second part entails the design, implementation and functional validation of high-density multi-channel neural interfaces, establishing bidirectional electrical communication between silicon artificial neurons and biological neurons at very large scale. Our work produced a neural interface system-on-chip (NISoC) with 1,024-channels of simultaneous electrical recording and stimulation at record noise-energy efficiency, with sub-[mu]W power consumption per channel at 6 [mu]Vrms input referred voltage noise over 12.5 kHz signal bandwidth. Integrating an array of 32 × 32 electrodes on a 2mm × 2mm chip in 65nm CMOS, the NISoC supports both voltage and current clamping through a programmable interface, ranging 100~dB in voltage, and 120~dB in current, for high-resolution high-throughput electrophysiology. Further, we demonstrated extended functionality for scalable multichannel in vitro intracellular electrophysiology in a second 256-channel hybridized NiSoC with sharp-tipped Pt nanowire electrodes deposited on the silicon top-metal surface, recording action potentials from rat cortical neurons cultured directly on top of the chip. These advances combine to enable bidirectional communication between artificial neurons and biological neurons in vitro, with precise probing of neural function and flexible control over synaptic interactions ranging from intracellular dynamics of individual cells to network dynamics comprising potentially thousands of neurons. In addition to applications in closed-loop electrophysiology, in vitro neuromorphic neural interface can be used as testbed for prototyping the next generation of neuroprosthetics.

High-Density Integrated Electrocortical Neural Interfaces

Download High-Density Integrated Electrocortical Neural Interfaces PDF Online Free

Author :
Release : 2019-08-03
Genre : Science
Kind : eBook
Book Rating : 161/5 ( reviews)

GET EBOOK


Book Synopsis High-Density Integrated Electrocortical Neural Interfaces by : Sohmyung Ha

Download or read book High-Density Integrated Electrocortical Neural Interfaces written by Sohmyung Ha. This book was released on 2019-08-03. Available in PDF, EPUB and Kindle. Book excerpt: High-Density Integrated Electrocortical Neural Interfaces provides a basic understanding, design strategies and implementation applications for electrocortical neural interfaces with a focus on integrated circuit design technologies. A wide variety of topics associated with the design and application of electrocortical neural implants are covered in this book. Written by leading experts in the field— Dr. Sohmyung Ha, Dr. Chul Kim, Dr. Patrick P. Mercier and Dr. Gert Cauwenberghs —the book discusses basic principles and practical design strategies of electrocorticography, electrode interfaces, signal acquisition, power delivery, data communication, and stimulation. In addition, an overview and critical review of the state-of-the-art research is included. These methodologies present a path towards the development of minimally invasive brain-computer interfaces capable of resolving microscale neural activity with wide-ranging coverage across the cortical surface. - Written by leading researchers in electrocorticography in brain-computer interfaces - Offers a unique focus on neural interface circuit design, from electrode to interface, circuit, powering, communication and encapsulation - Covers the newest ECoG interface systems and electrode interfaces for ECoG and biopotential sensing

Silicon Integrated High-density Electrocortical and Retinal Neural Interfaces

Download Silicon Integrated High-density Electrocortical and Retinal Neural Interfaces PDF Online Free

Author :
Release : 2016
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Silicon Integrated High-density Electrocortical and Retinal Neural Interfaces by : Sohmyung Ha

Download or read book Silicon Integrated High-density Electrocortical and Retinal Neural Interfaces written by Sohmyung Ha. This book was released on 2016. Available in PDF, EPUB and Kindle. Book excerpt: Recent interest and initiatives in brain research have driven a worldwide effort towards developing implantable neural interface systems with high spatiotemporal resolution and spatial coverage extending to the whole brain. Electrocorticography (ECoG) promises a minimally invasive, chronically implantable neural interface with resolution and spatial coverage capabilities that, when appropriately scaled, meet the needs of recently proposed brain initiatives. Current ECoG technologies, however, typically rely on cm-sized electrodes and wired operation, severely limiting their resolution and long-term use. The work presented here has advanced micro-electrocorticography (uECoG) technologies for wireless high-density cortical neural interfaces in two main directions: flexible active uECoG arrays; and modular fully integrated uECoG systems. This dissertation presents a systematic design methodology which addresses unique design challenges posed by the extreme densities, form factors and power budgets of these fully implantable neural interface systems, with experimental validation of their performance for neural signal acquisition, stimulation, and wireless powering and data communication. Notable innovations include 1) first demonstration of simultaneous wireless power and data telemetry at 6.78 Mbps data rate over a single 13.56 MHz inductive link; 2) integrated recording from a flexible active electrode ECoG array with 85 dB dynamic range at 7.7 nJ energy per 16-b sample; and 3) the first fully integrated and encapsulated wireless neural-interface-on-chip microsystem for non-contact neural sensing and energy-replenishing adiabatic stimulation delivering 145 uA current at 6 V compliance within 2.25 mm3 volume. In addition, the work presented here on advancing the resolution and coverage of neural interfaces extends further from the cortex to the retina. Despite considerable advances in retinal prostheses over the last two decades, the resolution of restored vision has remained severely limited, well below the 20/200 acuity threshold of blindness. Towards drastic improvements in spatial resolution, this dissertation presents a scalable architecture for retinal prostheses in which each stimulation electrode is directly activated by incident light and powered by a common voltage pulse transferred over a single wireless inductive link. The hybrid optical addressability and electronic powering scheme provides for separate spatial and temporal control over stimulation, and further provides optoelectronic gain for substantially lower light intensity thresholds than other optically addressed retinal prostheses using passive microphotodiode arrays. The architecture permits the use of high-density electrode arrays with ultra-high photosensitive silicon nanowires, obviating the need for excessive wiring and high-throughput data telemetry. Instead, the single inductive link drives the entire array of electrodes through two wires and provides external control over waveform parameters for the common voltage stimulation. A complete system comprising inductive telemetry link, stimulation pulse demodulator, charge-balancing series capacitor, and nanowire-based electrode device is integrated and validated ex vivo on rat retina tissue. Measurements demonstrate control over retinal neural activity both by light and electrical bias, validating the feasibility of the proposed architecture and its system components as an important first step towards a high-resolution optically addressed retinal prosthesis.

Neuromorphic Systems Engineering

Download Neuromorphic Systems Engineering PDF Online Free

Author :
Release : 2007-08-26
Genre : Technology & Engineering
Kind : eBook
Book Rating : 010/5 ( reviews)

GET EBOOK


Book Synopsis Neuromorphic Systems Engineering by : Tor Sverre Lande

Download or read book Neuromorphic Systems Engineering written by Tor Sverre Lande. This book was released on 2007-08-26. Available in PDF, EPUB and Kindle. Book excerpt: Neuromorphic Systems Engineering: Neural Networks in Silicon emphasizes three important aspects of this exciting new research field. The term neuromorphic expresses relations to computational models found in biological neural systems, which are used as inspiration for building large electronic systems in silicon. By adequate engineering, these silicon systems are made useful to mankind. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the reader with a snapshot of neuromorphic engineering today. It is organized into five parts viewing state-of-the-art developments within neuromorphic engineering from different perspectives. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the first collection of neuromorphic systems descriptions with firm foundations in silicon. Topics presented include: large scale analog systems in silicon neuromorphic silicon auditory (ear) and vision (eye) systems in silicon learning and adaptation in silicon merging biology and technology micropower analog circuit design analog memory analog interchipcommunication on digital buses £/LIST£ Neuromorphic Systems Engineering: Neural Networks in Silicon serves as an excellent resource for scientists, researchers and engineers in this emerging field, and may also be used as a text for advanced courses on the subject.

Neural Interface Engineering

Download Neural Interface Engineering PDF Online Free

Author :
Release : 2020-05-04
Genre : Technology & Engineering
Kind : eBook
Book Rating : 545/5 ( reviews)

GET EBOOK


Book Synopsis Neural Interface Engineering by : Liang Guo

Download or read book Neural Interface Engineering written by Liang Guo. This book was released on 2020-05-04. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive reference to major neural interfacing technologies used to transmit signals between the physical world and the nervous system for repairing, restoring and even augmenting body functions. The authors discuss the classic approaches for neural interfacing, the major challenges encountered, and recent, emerging techniques to mitigate these challenges for better chronic performances. Readers will benefit from this book’s unprecedented scope and depth of coverage on the technology of neural interfaces, the most critical component in any type of neural prostheses. Provides comprehensive coverage of major neural interfacing technologies; Reviews and discusses both classic and latest, emerging topics; Includes classification of technologies to provide an easy grasp of research and trends in the field.

You may also like...