Share

Scaling Physiological Processes

Download Scaling Physiological Processes PDF Online Free

Author :
Release : 2012-12-02
Genre : Science
Kind : eBook
Book Rating : 574/5 ( reviews)

GET EBOOK


Book Synopsis Scaling Physiological Processes by :

Download or read book Scaling Physiological Processes written by . This book was released on 2012-12-02. Available in PDF, EPUB and Kindle. Book excerpt: Traditional plant physiological ecology is organism centered and provides a useful framework for understanding the interactions between plants and their environment and for identifying characteristics likely to result in plant success in a particular habitat. This book focuses on extending concepts from plant physiological ecology as a basis for understanding carbon, energy, and biogeochemical cycles at ecosystem, regional, and global levels. This will be a valuable resource for researchers and graduate students in ecology, plant ecophysiology, ecosystem research, biometerology, earth system science, and remote sensing. The integration of metabolic activities across spatial scales, from leaf to ecosystem Global constraints and regional processes Functional units in ecological scaling Models and technologies for scaling

Scaling Physiological Processes in Trees

Download Scaling Physiological Processes in Trees PDF Online Free

Author :
Release : 2001
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Scaling Physiological Processes in Trees by : Brian J. Joyce

Download or read book Scaling Physiological Processes in Trees written by Brian J. Joyce. This book was released on 2001. Available in PDF, EPUB and Kindle. Book excerpt:

Plant Physiological Ecology

Download Plant Physiological Ecology PDF Online Free

Author :
Release : 2012-12-06
Genre : Science
Kind : eBook
Book Rating : 213/5 ( reviews)

GET EBOOK


Book Synopsis Plant Physiological Ecology by : R. Pearcey

Download or read book Plant Physiological Ecology written by R. Pearcey. This book was released on 2012-12-06. Available in PDF, EPUB and Kindle. Book excerpt: Physiological plant ecology is primarily concerned with the function and performance of plants in their environment. Within this broad focus, attempts are made on one hand to understand the underlying physiological, biochemical and molecular attributes of plants with respect to performance under the constraints imposed by the environment. On the other hand physiological ecology is also concerned with a more synthetic view which attempts to under stand the distribution and success of plants measured in terms of the factors that promote long-term survival and reproduction in the environment. These concerns are not mutually exclusive but rather represent a continuum of research approaches. Osmond et al. (1980) have elegantly pointed this out in a space-time scale showing that the concerns of physiological ecology range from biochemical and organelle-scale events with time constants of a second or minutes to succession and evolutionary-scale events involving communities and ecosystems and thousands, if not millions, of years. The focus of physiological ecology is typically at the single leaf or root system level extending up to the whole plant. The time scale is on the order of minutes to a year. The activities of individual physiological ecologists extend in one direction or the other, but few if any are directly concerned with the whole space-time scale. In their work, however, they must be cognizant both of the underlying mechanisms as well as the consequences to ecological and evolutionary processes.

Physiological Ecology

Download Physiological Ecology PDF Online Free

Author :
Release : 2007-08-05
Genre : Medical
Kind : eBook
Book Rating : 534/5 ( reviews)

GET EBOOK


Book Synopsis Physiological Ecology by : William H. Karasov

Download or read book Physiological Ecology written by William H. Karasov. This book was released on 2007-08-05. Available in PDF, EPUB and Kindle. Book excerpt: Unlocking the puzzle of how animals behave and how they interact with their environments is impossible without understanding the physiological processes that determine their use of food resources. But long overdue is a user-friendly introduction to the subject that systematically bridges the gap between physiology and ecology. Ecologists--for whom such knowledge can help clarify the consequences of global climate change, the biodiversity crisis, and pollution--often find themselves wading through an unwieldy, technically top-heavy literature. Here, William Karasov and Carlos Martínez del Rio present the first accessible and authoritative one-volume overview of the physiological and biochemical principles that shape how animals procure energy and nutrients and free themselves of toxins--and how this relates to broader ecological phenomena. After introducing primary concepts, the authors review the chemical ecology of food, and then discuss how animals digest and process food. Their broad view includes symbioses and extends even to ecosystem phenomena such as ecological stochiometry and toxicant biomagnification. They introduce key methods and illustrate principles with wide-ranging vertebrate and invertebrate examples. Uniquely, they also link the physiological mechanisms of resource use with ecological phenomena such as how and why animals choose what they eat and how they participate in the exchange of energy and materials in their biological communities. Thoroughly up-to-date and pointing the way to future research, Physiological Ecology is an essential new source for upper-level undergraduate and graduate students-and an ideal synthesis for professionals. The most accessible introduction to the physiological and biochemical principles that shape how animals use resources Unique in linking the physiological mechanisms of resource use with ecological phenomena An essential resource for upper-level undergraduate and graduate students An ideal overview for researchers

Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms

Download Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms PDF Online Free

Author :
Release : 2020-06-25
Genre :
Kind : eBook
Book Rating : 317/5 ( reviews)

GET EBOOK


Book Synopsis Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms by : Paul Bogdan

Download or read book Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms written by Paul Bogdan. This book was released on 2020-06-25. Available in PDF, EPUB and Kindle. Book excerpt: Widespread chronic diseases (e.g., heart diseases, diabetes and its complications, stroke, cancer, brain diseases) constitute a significant cause of rising healthcare costs and pose a significant burden on quality-of-life for many individuals. Despite the increased need for smart healthcare sensing systems that monitor / measure patients’ body balance, there is no coherent theory that facilitates the modeling of human physiological processes and the design and optimization of future healthcare cyber-physical systems (HCPS). The HCPS are expected to mine the patient’s physiological state based on available continuous sensing, quantify risk indices corresponding to the onset of abnormality, signal the need for critical medical intervention in real-time by communicating patient’s medical information via a network from individual to hospital, and most importantly control (actuate) vital health signals (e.g., cardiac pacing, insulin level, blood pressure) within personalized homeostasis. To prevent health complications, maintain good health and/or avoid fatal conditions calls for a cross-disciplinary approach to HCPS design where recent statistical-physics inspired discoveries done by collaborations between physicists and physicians are shared and enriched by applied mathematicians, control theorists and bioengineers. This critical and urgent multi-disciplinary approach has to unify the current state of knowledge and address the following fundamental challenges: One fundamental challenge is represented by the need to mine and understand the complexity of the structure and dynamics of the physiological systems in healthy homeostasis and associated with a disease (such as diabetes). Along the same lines, we need rigorous mathematical techniques for identifying the interactions between integrated physiologic systems and understanding their role within the overall networking architecture of healthy dynamics. Another fundamental challenge calls for a deeper understanding of stochastic feedback and variability in biological systems and physiological processes, in particular, and for deciphering their implications not only on how to mathematically characterize homeostasis, but also on defining new control strategies that are accounting for intra- and inter-patient specificity – a truly mathematical approach to personalized medicine. Numerous recent studies have demonstrated that heart rate variability, blood glucose, neural signals and other interdependent physiological processes demonstrate fractal and non-stationary characteristics. Exploiting statistical physics concepts, numerous recent research studies demonstrated that healthy human physiological processes exhibit complex critical phenomena with deep implications for how homeostasis should be defined and how control strategies should be developed when prolonged abnormal deviations are observed. In addition, several efforts have tried to connect these fractal characteristics with new optimal control strategies that implemented in medical devices such as pacemakers and artificial pancreas could improve the efficiency of medical therapies and the quality-of-life of patients but neglecting the overall networking architecture of human physiology. Consequently, rigorously analyzing the complexity and dynamics of physiological processes (e.g., blood glucose and its associated implications and interdependencies with other physiological processes) represents a fundamental step towards providing a quantifiable (mathematical) definition of homeostasis in the context of critical phenomena, understanding the onset of chronic diseases, predicting deviations from healthy homeostasis and developing new more efficient medical therapies that carefully account for the physiological complexity, intra- and inter-patient variability, rather than ignoring it. This Research Topic aims to open a synergetic and timely effort between physicians, physicists, applied mathematicians, signal processing, bioengineering and biomedical experts to organize the state of knowledge in mining the complexity of physiological systems and their implications for constructing more accurate mathematical models and designing QoL-aware control strategies implemented in the new generation of HCPS devices. By bringing together multi-disciplinary researchers seeking to understand the many aspects of human physiology and its complexity, we aim at enabling a paradigm shift in designing future medical devices that translates mathematical characteristics in predictable mathematical models quantifying not only the degree of homeostasis, but also providing fundamentally new control strategies within the personalized medicine era.

You may also like...