Share

Scalable Bayesian spatial analysis with Gaussian Markov random fields

Download Scalable Bayesian spatial analysis with Gaussian Markov random fields PDF Online Free

Author :
Release : 2020-08-17
Genre :
Kind : eBook
Book Rating : 184/5 ( reviews)

GET EBOOK


Book Synopsis Scalable Bayesian spatial analysis with Gaussian Markov random fields by : Per Sidén

Download or read book Scalable Bayesian spatial analysis with Gaussian Markov random fields written by Per Sidén. This book was released on 2020-08-17. Available in PDF, EPUB and Kindle. Book excerpt: Accurate statistical analysis of spatial data is important in many applications. Failing to properly account for spatial autocorrelation may often lead to false conclusions. At the same time, the ever-increasing sizes of spatial datasets pose a great computational challenge, as many standard methods for spatial analysis are limited to a few thousand data points. In this thesis, we explore how Gaussian Markov random fields (GMRFs) can be used for scalable analysis of spatial data. GMRFs are closely connected to the commonly used Gaussian processes, but have sparsity properties that make them computationally cheap both in time and memory. The Bayesian framework enables a GMRF to be used as a spatial prior, comprising the assumption of smooth variation over space, and gives a principled way to estimate the parameters and propagate uncertainty. We develop new algorithms that enable applying GMRF priors in 3D to the brain activity inherent in functional magnetic resonance imaging (fMRI) data, with millions of observations. We show that our methods are both faster and more accurate than previous work. A method for approximating selected elements of the inverse precision matrix (i.e. the covariance matrix) is also proposed, which is important for evaluating the posterior uncertainty. In addition, we establish a link between GMRFs and deep convolutional neural networks, which have been successfully used in countless machine learning tasks for images, resulting in a deep GMRF model. Finally, we show how GMRFs can be used in real-time robotic search and rescue operations, for modeling the spatial distribution of injured persons. Tillförlitlig statistisk analys av spatiala data är viktigt inom många tillämpningar. Om inte korrekt hänsyn tas till spatial autokorrelation kan det ofta leda till felaktiga slutsatser. Samtidigt ökar ständigt storleken på de spatiala datamaterialen vilket utgör en stor beräkningsmässig utmaning, eftersom många standardmetoder för spatial analys är begränsade till några tusental datapunkter. I denna avhandling utforskar vi hur Gaussiska Markov-fält (eng: Gaussian Markov random fields, GMRF) kan användas för mer skalbara analyser av spatiala data. GMRF-modeller är nära besläktade med de ofta använda Gaussiska processerna, men har gleshetsegenskaper som gör dem beräkningsmässigt effektiva både vad gäller tids- och minnesåtgång. Det Bayesianska synsättet gör det möjligt att använda GMRF som en spatial prior som innefattar antagandet om långsam spatial variation och ger ett principiellt tillvägagångssätt för att skatta parametrar och propagera osäkerhet. Vi utvecklar nya algoritmer som gör det möjligt att använda GMRF-priors i 3D för den hjärnaktivitet som indirekt kan observeras i hjärnbilder framtagna med tekniken fMRI, som innehåller milliontals datapunkter. Vi visar att våra metoder är både snabbare och mer korrekta än tidigare forskning. En metod för att approximera utvalda element i den inversa precisionsmatrisen (dvs. kovariansmatrisen) framförs också, vilket är viktigt för att kunna evaluera osäkerheten i posteriorn. Vidare gör vi en koppling mellan GMRF och djupa neurala faltningsnätverk, som har använts framgångsrikt för mängder av bildrelaterade problem inom maskininlärning, vilket mynnar ut i en djup GMRF-modell. Slutligen visar vi hur GMRF kan användas i realtid av autonoma drönare för räddningsinsatser i katastrofområden för att modellera den spatiala fördelningen av skadade personer.

Gaussian Markov Random Fields

Download Gaussian Markov Random Fields PDF Online Free

Author :
Release : 2005-02-18
Genre : Mathematics
Kind : eBook
Book Rating : 021/5 ( reviews)

GET EBOOK


Book Synopsis Gaussian Markov Random Fields by : Havard Rue

Download or read book Gaussian Markov Random Fields written by Havard Rue. This book was released on 2005-02-18. Available in PDF, EPUB and Kindle. Book excerpt: Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie

An Applied Investigation of Gaussian Markov Random Fields

Download An Applied Investigation of Gaussian Markov Random Fields PDF Online Free

Author :
Release : 2012
Genre : Electronic dissertations
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis An Applied Investigation of Gaussian Markov Random Fields by : Jessica Lyn Olsen

Download or read book An Applied Investigation of Gaussian Markov Random Fields written by Jessica Lyn Olsen. This book was released on 2012. Available in PDF, EPUB and Kindle. Book excerpt: Recently, Bayesian methods have become the essence of modern statistics, specifically, the ability to incorporate hierarchical models. In particular, correlated data, such as the data found in spatial and temporal applications, have benefited greatly from the development and application of Bayesian statistics. One particular application of Bayesian modeling is Gaussian Markov Random Fields. These methods have proven to be very useful in providing a framework for correlated data. I will demonstrate the power of GMRFs by applying this method to two sets of data; a set of temporal data involving car accidents in the UK and a set of spatial data involving Provo area apartment complexes. For the first set of data, I will examine how including a seatbelt covariate effects our estimates for the number of car accidents. In the second set of data, we will scrutinize the effect of BYU approval on apartment complexes. In both applications we will investigate Laplacian approximations when normal distribution assumptions do not hold.

Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks

Download Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks PDF Online Free

Author :
Release : 2015-10-27
Genre : Technology & Engineering
Kind : eBook
Book Rating : 219/5 ( reviews)

GET EBOOK


Book Synopsis Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks by : Yunfei Xu

Download or read book Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks written by Yunfei Xu. This book was released on 2015-10-27. Available in PDF, EPUB and Kindle. Book excerpt: This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive distribution of a scalar environmental field of interest. New techniques are introduced to avoid computationally prohibitive Markov chain Monte Carlo methods for resource-constrained mobile sensors. Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks starts with a simple spatio-temporal model and increases the level of model flexibility and uncertainty step by step, simultaneously solving increasingly complicated problems and coping with increasing complexity, until it ends with fully Bayesian approaches that take into account a broad spectrum of uncertainties in observations, model parameters, and constraints in mobile sensor networks. The book is timely, being very useful for many researchers in control, robotics, computer science and statistics trying to tackle a variety of tasks such as environmental monitoring and adaptive sampling, surveillance, exploration, and plume tracking which are of increasing currency. Problems are solved creatively by seamless combination of theories and concepts from Bayesian statistics, mobile sensor networks, optimal experiment design, and distributed computation.

Random Fields for Spatial Data Modeling

Download Random Fields for Spatial Data Modeling PDF Online Free

Author :
Release : 2020-02-17
Genre : Science
Kind : eBook
Book Rating : 187/5 ( reviews)

GET EBOOK


Book Synopsis Random Fields for Spatial Data Modeling by : Dionissios T. Hristopulos

Download or read book Random Fields for Spatial Data Modeling written by Dionissios T. Hristopulos. This book was released on 2020-02-17. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.

You may also like...