Share

Predictive Network Modeling And Experimentation In Complex Biological Systems

Download Predictive Network Modeling And Experimentation In Complex Biological Systems PDF Online Free

Author :
Release : 2015
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Predictive Network Modeling And Experimentation In Complex Biological Systems by : Steven Steinway

Download or read book Predictive Network Modeling And Experimentation In Complex Biological Systems written by Steven Steinway. This book was released on 2015. Available in PDF, EPUB and Kindle. Book excerpt: Biology is incredibly complex -- at the molecular, cellular, tissue, and population level, there exists a tremendous number of discrete interacting components tightly regulating the processes that sustain life. Biological systems have traditionally been viewed in a reductionist manner often literally (and metaphorically) through a magnifying glass, leading to insight into how the individual parts work. Network theory, on the other hand, can be used to put the pieces together, to understand how complex and emergent behaviors arise from the totality of interactions in complex systems, such as those seen in biology. Network theory is the study of systems of discrete interacting components and provides a framework for understanding complex systems. A network-focused investigation of a complex biological system allows for the understanding of the system's emergent properties, for example its function and dynamics. Network dynamics are of particular interest biologically because biological systems are not static but are constantly changing in response to perturbations and environmental stimuli in space and time. Systems level biological analysis has been aided by the recent explosion of high throughput data. This has led to an abundance of quantitative and qualitative information related to the activation of biological systems, but frequently there is still a paucity of kinetic and temporal information. Discrete dynamic modeling provides a means to create predictive models of biological systems by integrating fragmentary and qualitative interaction information. Using discrete dynamic modeling, a structural (static) network of biological regulatory relationships can be translated into a mathematical model without the use of kinetic parameters. This model can describe the dynamics of a biological system (i.e. how it changes over time), both in normal and in perturbation (e.g. disease) scenarios. In this dissertation we present the application of network theory and discrete dynamic modeling integrated with experimental laboratory analysis to understand biological diseases in three contexts. The first is the construction of a network model of epidermal derived growth factor receptor (EGFR) signaling in cancer. We translate this model into two types of discrete models: a Boolean model and a three-state model. We show how the effects of an EGFR inhibitor (such as the drug gefitinib) can suppress tumor growth, and we model how genomic variants can augment the effect of EGFR inhibition in tumor growth. Importantly, we compare discrete modeling outcomes to an alternative modeling framework, which relies on detailed kinetic information, called ordinary differential equation (ODE) modeling and show that both models achieve similar findings. Our results demonstrate that discrete dynamic model can accurately model biomedical systems and make important predictions about the effect a drug will have on a disease (e.g. tumor growth) in the context of various perturbations. Importantly, discrete dynamic models can be employed in the absence of kinetic parameters, making this modeling approach suitable for the many biological systems in which detailed kinetic information is not available. Second, we construct a network model of epithelial-to-mesenchymal transition (EMT), a developmental process hijacked by cancer cells to leave the primary tumor site, invade surrounding tissue, and establish distant metastases. We demonstrate that the EMT network model recapitulates known dysregulations during the induction of EMT and predicts the activation of the Wnt and Sonic hedgehog (SHH) signaling pathways during this process. We confirm the cross-talk between TGF[beta], Wnt and SHH signaling in vitro in multiple human liver cancer cell lines and tumor samples. Next, we use the EMT network model to systematically explore perturbations that suppress EMT, with the ultimate goal of identifying therapeutic interventions that suppress tumor invasion. We computationally explore close to half a million individual and combination perturbations to the EMT network and identify that only a dozen suppress EMT. We test these interventions experimentally and our findings suggest that many predicted interventions suppress the EMT process. Lastly, we construct a model of the enormous ecological community of bacteria that live in our intestines, collectively called the gut microbiome. This model is used to understand the effect of antibiotic treatment and opportunistic C. difficile infection (a devastating and highly prevalent disease entity) on the native microbiome and predict therapeutic probiotic interventions to suppress C. difficile infection. We integrate this modeling with another type of modeling, genome scale metabolic network reconstructions, to understand metabolic differences between community members and to identify the role of metabolism in the observed microbial interactions. In vitro experimental data validate a key result of my computational model, that Barnesiella intestinihominis can in fact suppress C. difficile growth. This novel result suggests that Barnesiella could potentially be used as a probiotic to suppress C. difficile growth.Taken together, the studies presented in this thesis demonstrate the tremendous capacity of network modeling to elucidate biomedical systems. We build networks, construct mathematical models, study network dynamics, and use network-directed insight to guide experiments in critical biomedical areas. The ultimate goal of this work has been to translate network-directed insight into actionable biomedical findings that lead to improved understanding of human disease, enhanced patient care, and a betterment of the human condition.

Modeling in Systems Biology

Download Modeling in Systems Biology PDF Online Free

Author :
Release : 2010-10-21
Genre : Computers
Kind : eBook
Book Rating : 742/5 ( reviews)

GET EBOOK


Book Synopsis Modeling in Systems Biology by : Ina Koch

Download or read book Modeling in Systems Biology written by Ina Koch. This book was released on 2010-10-21. Available in PDF, EPUB and Kindle. Book excerpt: The emerging, multi-disciplinary field of systems biology is devoted to the study of the relationships between various parts of a biological system, and computer modeling plays a vital role in the drive to understand the processes of life from an holistic viewpoint. Advancements in experimental technologies in biology and medicine have generated an enormous amount of biological data on the dependencies and interactions of many different molecular cell processes, fueling the development of numerous computational methods for exploring this data. The mathematical formalism of Petri net theory is able to encompass many of these techniques. This essential text/reference presents a comprehensive overview of cutting-edge research in applications of Petri nets in systems biology, with contributions from an international selection of experts. Those unfamiliar with the field are also provided with a general introduction to systems biology, the foundations of biochemistry, and the basics of Petri net theory. Further chapters address Petri net modeling techniques for building and analyzing biological models, as well as network prediction approaches, before reviewing the applications to networks of different biological classification. Topics and features: investigates the modular, qualitative modeling of regulatory networks using Petri nets, and examines an Hybrid Functional Petri net simulation case study; contains a glossary of the concepts and notation used in the book, in addition to exercises at the end of each chapter; covers the topological analysis of metabolic and regulatory networks, the analysis of models of signaling networks, and the prediction of network structure; provides a biological case study on the conversion of logical networks into Petri nets; discusses discrete modeling, stochastic modeling, fuzzy modeling, dynamic pathway modeling, genetic regulatory network modeling, and quantitative analysis techniques; includes a Foreword by Professor Jens Reich, Professor of Bioinformatics at Humboldt University and Max Delbrück Center for Molecular Medicine in Berlin. This unique guide to the modeling of biochemical systems using Petri net concepts will be of real utility to researchers and students of computational biology, systems biology, bioinformatics, computer science, and biochemistry.

Boolean Networks as Predictive Models of Emergent Biological Behaviors

Download Boolean Networks as Predictive Models of Emergent Biological Behaviors PDF Online Free

Author :
Release : 2024-03-28
Genre : Science
Kind : eBook
Book Rating : 943/5 ( reviews)

GET EBOOK


Book Synopsis Boolean Networks as Predictive Models of Emergent Biological Behaviors by : Jordan C. Rozum

Download or read book Boolean Networks as Predictive Models of Emergent Biological Behaviors written by Jordan C. Rozum. This book was released on 2024-03-28. Available in PDF, EPUB and Kindle. Book excerpt: Interacting biological systems at all organizational levels display emergent behavior. Modeling these systems is made challenging by the number and variety of biological components and interactions – from molecules in gene regulatory networks to species in ecological networks – and the often-incomplete state of system knowledge, such as the unknown values of kinetic parameters for biochemical reactions. Boolean networks have emerged as a powerful tool for modeling these systems. This Element provides a methodological overview of Boolean network models of biological systems. After a brief introduction, the authors describe the process of building, analyzing, and validating a Boolean model. They then present the use of the model to make predictions about the system's response to perturbations and about how to control its behavior. The Element emphasizes the interplay between structural and dynamical properties of Boolean networks and illustrates them in three case studies from disparate levels of biological organization.

Systems Biology in Practice

Download Systems Biology in Practice PDF Online Free

Author :
Release : 2008-07-15
Genre : Medical
Kind : eBook
Book Rating : 88X/5 ( reviews)

GET EBOOK


Book Synopsis Systems Biology in Practice by : Edda Klipp

Download or read book Systems Biology in Practice written by Edda Klipp. This book was released on 2008-07-15. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the main concepts, this book leads students as well as advanced researchers from different disciplines to an understanding of current ideas in the complex field of comprehensive experimental investigation of biological objects, analysis of data, development of models, simulation, and hypothesis generation. It provides readers with guidance on how a specific complex biological question may be tackled: - How to formulate questions that can be answered - Which experiments to perform - Where to find information in databases and on the Internet - What kinds of models are appropriate - How to use simulation tools - What can be learned from the comparison of experimental data and modeling results - How to make testable predictions. The authors demonstrate how mathematical concepts can illuminate the principles underlying biology at a genetic, molecular, cellular and even organism level, and how to use mathematical tools for analysis and prediction.

Systems Biology

Download Systems Biology PDF Online Free

Author :
Release : 2006-09-14
Genre : Science
Kind : eBook
Book Rating : 807/5 ( reviews)

GET EBOOK


Book Synopsis Systems Biology by : Isidore Rigoutsos

Download or read book Systems Biology written by Isidore Rigoutsos. This book was released on 2006-09-14. Available in PDF, EPUB and Kindle. Book excerpt: The advent of genome sequencing and associated technologies has transformed biologists' ability to measure important classes of molecules and their interactions. This expanded cellular view has opened the field to thousands of interactions that previously were outside the researchers' reach. The processing and interpretation of these new vast quantities of interconnected data call for sophisticated mathematical models and computational methods. Systems biology meets this need by combining genomic knowledge with theoretical, experimental and computational approaches from a number of traditional scientific disciplines to create a mechanistic explanation of cellular systems and processes.Systems Biology I: Genomics and Systems Biology II: Networks, Models, and Applications offer a much-needed study of genomic principles and their associated networks and models. Written for a wide audience, each volume presents a timely compendium of essential information that is necessary for a comprehensive study of the subject. The chapters in the two volumes reflect the hierarchical nature of systems biology. Chapter authors-world-recognized experts in their fields-provide authoritative discussions on a wide range of topics along this hierarchy. Volume I explores issues pertaining to genomics that range from prebiotic chemistry to noncoding RNAs. Volume II covers an equally wide spectrum, from mass spectrometry to embryonic stem cells. The two volumes are meant to provide a reliable reference for students and researchers alike.

You may also like...