Share

Optimal and Efficient Geolocation and Path Planning for Unmanned Aerial Vehicles Using Uncertainty Measures

Download Optimal and Efficient Geolocation and Path Planning for Unmanned Aerial Vehicles Using Uncertainty Measures PDF Online Free

Author :
Release : 2011
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Optimal and Efficient Geolocation and Path Planning for Unmanned Aerial Vehicles Using Uncertainty Measures by : Sean R. Semper

Download or read book Optimal and Efficient Geolocation and Path Planning for Unmanned Aerial Vehicles Using Uncertainty Measures written by Sean R. Semper. This book was released on 2011. Available in PDF, EPUB and Kindle. Book excerpt: A general frame work for determining an object's absolute position from relative position measurements, commonly called geolocation, is developed in this dissertation. Relative measurements are obtained from a two unmanned aerial vehicle (UAV) team with electronic support measure (ESM) sensors on board. One team combines their time of arrival (TOA) measurements forming one time difference of arrival measurement (TDOA) from an emitter's signal. Using an Extended Kalman Filter (EKF), pseudorange equations containing UAV positions and emitter position estimates are sequentially estimated to solve for absolute emitter positions. Uncertainty metrics are derived for enhancing filter performance, allowing for a theoretical selection of guidance routines given operational requirements. When prior information is present then special stochastic approach is developed to include this information into the guidance routine. When the UAV heading angle contains errors, a newly derived a marginalized adaptive Gaussian sum propagator is used to estimate nonlinear UAV positions. Marginalizing the state-space places computational efforts on the nonlinear portions of the state-space and allows the linear portions to propagated using a linear Kalman Filter (KF). Combining new estimation methods allows one to deal with more complex scenarios and create robust architectures for passive geolocation solutions.

Decentralized Geolocation and Optimal Path Planning Using Unmanned Aerial Vehicles

Download Decentralized Geolocation and Optimal Path Planning Using Unmanned Aerial Vehicles PDF Online Free

Author :
Release : 2008
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Decentralized Geolocation and Optimal Path Planning Using Unmanned Aerial Vehicles by : Sean R. Semper

Download or read book Decentralized Geolocation and Optimal Path Planning Using Unmanned Aerial Vehicles written by Sean R. Semper. This book was released on 2008. Available in PDF, EPUB and Kindle. Book excerpt: A general frame work for determining an object's absolute position from relative position measurements, commonly called geolocation, is developed in this thesis. Relative measurements are obtained from a two unmanned aerial vehicle (UAV) team with electronic support measure (ESM) sensors on board. One team combines their time of arrival (TOA) measurements forming one time difference of arrival measurement (TDOA) from an emitter's signal. Using an Extended Kalman Filter (EKF), pseudorange equations containing UAV positions and emitter position estimates are sequentially estimated to solve for absolute emitter positions. When N UAV teams are available, a decentralized EKF architecture is derived to optimally fuse estimates from N filters at the global fusion node. In addition, optimal UAV trajectories are developed to minimize the covariance position errors. Weights are placed on the UAV motions, so minimum and maximum distances to the emitting object are restricted.

Cooperative Path Planning of Unmanned Aerial Vehicles

Download Cooperative Path Planning of Unmanned Aerial Vehicles PDF Online Free

Author :
Release : 2010-11-09
Genre : Technology & Engineering
Kind : eBook
Book Rating : 648/5 ( reviews)

GET EBOOK


Book Synopsis Cooperative Path Planning of Unmanned Aerial Vehicles by : Antonios Tsourdos

Download or read book Cooperative Path Planning of Unmanned Aerial Vehicles written by Antonios Tsourdos. This book was released on 2010-11-09. Available in PDF, EPUB and Kindle. Book excerpt: An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in the area of cooperative systems, cooperative control and optimization particularly in the aerospace industry.

Robust Trajectory Planning for Unmanned Aerial Vehicles in Uncertain Environments

Download Robust Trajectory Planning for Unmanned Aerial Vehicles in Uncertain Environments PDF Online Free

Author :
Release : 2008
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Robust Trajectory Planning for Unmanned Aerial Vehicles in Uncertain Environments by : Brandon Douglas Luders

Download or read book Robust Trajectory Planning for Unmanned Aerial Vehicles in Uncertain Environments written by Brandon Douglas Luders. This book was released on 2008. Available in PDF, EPUB and Kindle. Book excerpt: As unmanned aerial vehicles (UAVs) take on more prominent roles in aerial missions, it becomes necessary to increase the level of autonomy available to them within the mission planner. In order to complete realistic mission scenarios, the UAV must be capable of operating within a complex environment, which may include obstacles and other no-fly zones. Additionally, the UAV must be able to overcome environmental uncertainties such as modeling errors, external disturbances, and an incomplete situational awareness. By utilizing planners which can autonomously navigate within such environments, the cost-effectiveness of UAV missions can be dramatically improved.This thesis develops a UAV trajectory planner to efficiently identify and execute trajectories which are robust to a complex, uncertain environment. This planner, named Efficient RSBK, integrates previous mixed-integer linear programming (MILP) path planning algorithms with several implementation innovations to achieve provably robust on-line trajectory optimization. Using the proposed innovations, the planner is able to design intelligent long-term plans using a minimal number of decision variables. The effectiveness of this planner is demonstrated with both simulation results and flight experiments on a quadrotor testbed.Two major components of the Efficient RSBK framework are the robust model predictive control (RMPC) scheme and the low-level planner. This thesis develops a generalized framework to investigate RMPC affine feedback policies on the disturbance, identify relative strengths and weaknesses, and assess suitability for the UAV trajectory planning problem. A simple example demonstrates that even with a conventional problem setup, the closed-loop performance may not always improve with additional decision variables, despite the resulting increase in computational complexity. A compatible low-level troller is also introduced which significantly improves trajectory-following accuracy, as demonstrated by additional flight experiments.

Planning Under Uncertainty for Unmanned Aerial Vehicles

Download Planning Under Uncertainty for Unmanned Aerial Vehicles PDF Online Free

Author :
Release : 2016
Genre : Drone aircraft
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Planning Under Uncertainty for Unmanned Aerial Vehicles by : Ryan Skeele

Download or read book Planning Under Uncertainty for Unmanned Aerial Vehicles written by Ryan Skeele. This book was released on 2016. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned aerial vehicle (UAV) technology has grown out of traditional research and military applications and has captivated the commercial and consumer markets, showing the ability to perform a spectrum of autonomous functions. This technology has the capability of saving lives in search and rescue, fighting wildfires in environmental monitoring, and delivering time dependent medicine in package delivery. These examples demonstrate the potential impact this technology will have on our society. However, it is evident how sensitive UAVs are to the uncertainty of the physical world. In order to properly achieve the full potential of UAVs in these markets, robust and efficient planning algorithms are needed. This thesis addresses the challenge of planning under uncertainty for UAVs. We develop a suite of algorithms that are robust to changes in the environment and build on the key areas of research needed for utilizing UAVs in a commercial setting. Throughout this research three main components emerged: monitoring targets in dynamic environments, exploration with unreliable communication, and risk-aware path planning. We use a realistic fire simulation to test persistent monitoring in an uncertain environment. The fire is generated using the standard program for modeling wildfire, FARSITE. This model was used to validate a weighted-greedy approach to monitoring clustered points of interest (POIs) over traditional methods of tracking a fire front. We implemented the algorithm on a commercial UAV to demonstrate the deployment capability. Dynamic monitoring has limited potential if if coordinated planning is fallible to uncertainty in the world. Uncertain communication can cause critical failures in coordinated planning algorithms. We develop a method for coordinated exploration of a multi-UAV team with unreliable communication and limited battery life. Our results show that the proposed algorithm, which leverages meeting, sacrificing, and relaying behavior, increases the percentage of the environment explored over a frontier-based exploration strategy by up to 18%. We test on teams of up to 8 simulated UAVs and 2 real UAVs able to cope with communication loss and still report improved gains. We demonstrate this work with a pair of custom UAVs in an indoor office environment. We introduce a novel approach to incorporating and addressing uncertainty in planning problems. The proposed Risk-Aware Graph Search (RAGS) algorithm combines traditional deterministic search techniques with risk-aware planning. RAGS is able to trade off the number of future path options, as well as the mean and variance of the associated path cost distributions to make online edge traversal decisions that minimize the risk of executing a high-cost path. The algorithm is compared against existing graphsearch techniques on a set of graphs with randomly assigned edge costs, as well as over a set of graphs with transition costs generated from satellite imagery data. In all cases, RAGS is shown to reduce the probability of executing high-cost paths over A*, D* and a greedy planning approach. High level planning algorithms can be brittle in dynamic conditions where the environment is not modeled perfectly. In developing planners for uncertainty we ensure UAVs will be able to operate in conditions outside the scope of prior techniques. We address the need for robustness in robotic monitoring, coordination, and path planning tasks. Each of the three methods introduced were tested in simulated and real environments, and the results show improvement over traditional algorithms.

You may also like...