Share

Network Wide Signal Control Strategy Base on Connected Vehicle Technology

Download Network Wide Signal Control Strategy Base on Connected Vehicle Technology PDF Online Free

Author :
Release : 2018
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Network Wide Signal Control Strategy Base on Connected Vehicle Technology by : Lei Zhang

Download or read book Network Wide Signal Control Strategy Base on Connected Vehicle Technology written by Lei Zhang. This book was released on 2018. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation discusses network wide signal control strategies base on connected vehicle technology. Traffic congestion on arterials has become one of the largest threats to economic competitiveness, livability, safety, and long-term environmental sustainability in the United States. In addition, arterials usually experience more blockage than freeways, specifically in terms of intersection congestion. There is no doubt that emerging technologies provide unequaled opportunities to revolutionize “retiming” and mitigate traffic congestion. Connected vehicle technology provides unparalleled safety benefits and holds promise in terms of alleviating both traffic congestion and the environmental impacts of future transportation systems. The objective of this research is to improve the mobility, safety and environmental effects at signalized arterials with connected vehicles. The proposed solution of this dissertation is to formulate traffic signal control models for signalized arterials based on connected vehicle technology. The models optimize offset, split, and cycle length to minimize total queue delay in all directions of coordinated intersections. Then, the models are implemented in a centralized system—including closed-loop systems—first, before expanding the results to distributed systems. The benefits of the models are realized at the infant stage of connected vehicle deployment when the penetration rate of connected vehicles is around 10%. Furthermore, the benefits incentivize the growth of the penetration rate for drivers. In addition, this dissertation contains a performance evaluation in traffic delay, volume throughput, fuel consumption, emission, and safety by providing a case study of coordinated signalized intersections. The case study results show the solution of this dissertation could adapt early deployment of connected vehicle technology and apply to future connected vehicle technology development.

Connected Vehicle Systems

Download Connected Vehicle Systems PDF Online Free

Author :
Release : 2017-08-07
Genre : Computers
Kind : eBook
Book Rating : 515/5 ( reviews)

GET EBOOK


Book Synopsis Connected Vehicle Systems by : Yunpeng Wang

Download or read book Connected Vehicle Systems written by Yunpeng Wang. This book was released on 2017-08-07. Available in PDF, EPUB and Kindle. Book excerpt: Connected vehicles and intelligent vehicles have been identified as key technologies for increasing road safety and transport efficiency. This book presents and discusss the recent advances in theory and practice in connected vehicle systems. It covers emerging research that aims at dealing with the challenges in designing the essential functional components of connected vehicles. Major topics include intra- and inter-vehicle communications, mobility model of fleet and ramp merging, trace and position data analysis, security and privacy.

Enhanced Traffic Signal Operation Using Connected Vehicle Data

Download Enhanced Traffic Signal Operation Using Connected Vehicle Data PDF Online Free

Author :
Release : 2017
Genre : Intelligent transportation systems
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Enhanced Traffic Signal Operation Using Connected Vehicle Data by : Ehsan Bagheri

Download or read book Enhanced Traffic Signal Operation Using Connected Vehicle Data written by Ehsan Bagheri. This book was released on 2017. Available in PDF, EPUB and Kindle. Book excerpt: As traffic on urban road network increases, congestion and delays are becoming more severe. At grade intersections form capacity bottlenecks in urban road networks because at these locations, capacity must be shared by competing traffic movements. Traffic signals are the most common method by which the right of way is dynamically allocated to conflicting movements. A range of traffic signal control strategies exist including fixed time control, actuated control, and adaptive traffic signal control (ATSC). ATSC relies on traffic sensors to estimate inputs such as traffic demands, queue lengths, etc. and then dynamically adjusts signal timings with the objective to minimize delays and stops at the intersection. Despite, the advantages of these ATSC systems, one of the barriers limiting greater use of these systems is the large number of traffic sensors required to provide the essential information for their signal timing optimization methodologies. A recently introduced technology called connected vehicles will make vehicles capable of providing detailed information such as their position, speed, acceleration rate, etc. in real-time using a wireless technology. The deployment of connected vehicle technology would provide the opportunity to introduce new traffic control strategies or to enhance the existing one. Some work has been done to-date to develop new ATSC systems on the basis of the data provided by connected vehicles which are mainly designed on the assumption that all vehicles on the network are equipped with the connected vehicle technology. The goals of such systems are to: 1) provide better performance at signalized intersections using enhanced algorithms based on richer data provided by the connected vehicles; and 2) reduce (or eliminate) the need for fixed point detectors/sensors in order to reduce deployment and maintenance costs. However, no work has been done to investigate how connected vehicle data can improve the performance of ATSC systems that are currently deployed and that operate using data from traditional detectors. Moreover, achieving a 100% market penetration of connected vehicles may take more than 30 years (even if the technology is mandated on new vehicles). Therefore, it is necessary to provide a solution that is capable of improving the performance of signalized intersections during this transition period using connected vehicle data even at low market penetration rates. This research examines the use of connected vehicle data as the only data source at different market penetration rates aiming to provide the required inputs for conventional adaptive signal control systems. The thesis proposes various methodologies to: 1) estimate queues at signalized intersections; 2) dynamically estimate the saturation flow rate required for optimizing the timings of traffic signals at intersections; and 3) estimate the free flow speed on arterials for the purpose of optimizing offsets between traffic signals. This thesis has resulted in the following findings: 1. Connected vehicle data can be used to estimate the queue length at signalized intersections especially for the purpose of estimating the saturation flow rate. The vehicles' length information provided by connected vehicles can be used to enhance the queue estimation when the traffic composition changes on a network. 2. The proposed methodology for estimating the saturation flow rate is able to estimate temporally varying saturation flow rates in response to changing network conditions, including lane blockages and queue spillback that limit discharge rates, and do so with an acceptable range of errors even at low level of market penetration of connected vehicles. The evaluation of the method for a range of traffic Level of Service (LOS) shows that the maximum observed mean absolute relative error (6.2%) occurs at LOS F and when only 10% of vehicles in the traffic stream are connected vehicles. 3. The proposed method for estimating the Free Flow Speed (FFS) on arterial roads can provide estimations close to the known ground truth and can respond to changes in the FFS. The results also show that the maximum absolute error of approximately 4.7 km/h in the estimated FFS was observed at 10% market penetration rate of connected vehicles. 4. The results of an evaluation of an adaptive signal control system based on connected vehicle data in a microsimulation environment show that the adaptive signal control system is able to adjust timings of signals at intersections in response to changes in the saturation flow rate and free flow speed estimated from connected vehicle data using the proposed methodologies. The comparison of the adaptive signal control system against a fixed time control at 20% and 100% CV market penetration rates shows improvements in average vehicular delay and average number of stops at both market penetration rates and though improvements are larger for 100% CV LMP, approximately 70% of these improvements are achieved at 20% CV LMP.

Connected Vehicles

Download Connected Vehicles PDF Online Free

Author :
Release : 2018-10-24
Genre : Technology & Engineering
Kind : eBook
Book Rating : 850/5 ( reviews)

GET EBOOK


Book Synopsis Connected Vehicles by : Radovan Miucic

Download or read book Connected Vehicles written by Radovan Miucic. This book was released on 2018-10-24. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces concepts and technologies of Intelligent Transportation Systems (ITS). It describes state of the art safety communication protocol called Dedicated Short Range Communication (DSRC), currently being considered for adoption by the USDOT and automotive industry in the US. However, the principles of this book are applicable even if the underlying physical layer protocol of V2X changes in the future, e.g. V2X changes from DSRC to cellular-based connectivity. Fundamental ITS concepts include topics like global positioning system; Vehicle to Vehicle (V2V), Vehicle to Pedestrian (V2P), and Vehicle to Infrastructure (V2I) communications; human-machine interface; and security and privacy. Fundamental concepts are sometimes followed by the real-life test experimental results (such as in V2P Chapter) and description of the performance metrics used to evaluate the results. This book also describes equations and math used in the development of the individual parts of the system. This book surveys current and previous publications for trending research in the ITS domain. It also covers state of the art standards that are in place for the DSRC in the US, starting from the application layer defined in SAE J2735 all the way to physical layer defined in IEEE 802.11. The authors provide a detailed discussion on what is needed to extend the current standards to accommodate future needs of the vehicle communications, such as needs for future autonomous vehicles. Programs and code examples accompany appropriate chapters, for example, after describing remote vehicle target classification function a pseudo code and description is provided. In addition, the book discusses current topics of the technology such as spectrum sharing, simulation, security, and privacy. The intended audience for this book includes engineering graduate students, automotive professionals/engineers, researchers and technology enthusiasts.

Mobility and Environment Improvement of Signalized Networks Through Vehicle-to-Infrastructure (V2I) Communications

Download Mobility and Environment Improvement of Signalized Networks Through Vehicle-to-Infrastructure (V2I) Communications PDF Online Free

Author :
Release : 2013
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Mobility and Environment Improvement of Signalized Networks Through Vehicle-to-Infrastructure (V2I) Communications by : Gerard Aguilar Ubiergo

Download or read book Mobility and Environment Improvement of Signalized Networks Through Vehicle-to-Infrastructure (V2I) Communications written by Gerard Aguilar Ubiergo. This book was released on 2013. Available in PDF, EPUB and Kindle. Book excerpt: Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned each year by idling engines, releasing tons of unnecessary toxic pollutants to the atmosphere. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with numerous communication and computing devices. In this thesis, an initial comprehensive literature search is carried out on topics related to traffic flow models, connected vehicles, eco-driving, traffic signal timing, and the application of connected vehicle technologies in improving the operation of signalized networks. Then a car-following model and an emission model are combined to simulate the behavior of vehicles at signalized intersections and calculate traffic delays in queues, vehicle emissions and fuel consumption. Next, a strategy to provide mobility and environment improvements in signalized networks is presented. In this strategy, the control variable is the advisory speed limit, which is designed to smooth vehicles' speed profiles taking advantage of Vehicle-to-Intersection communication. Finally, the performance of the control system is studied depending on market penetration rate and traffic conditions, as well as communication, positioning and network characteristics. In particular, savings of around 15% in user delays and around 8% in fuel consumption and CO2 emissions are demonstrated.

You may also like...