Share

Multiscale Computational Methods in Chemistry and Physics

Download Multiscale Computational Methods in Chemistry and Physics PDF Online Free

Author :
Release : 2001
Genre : Chemistry
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Multiscale Computational Methods in Chemistry and Physics by : Achi Brandt

Download or read book Multiscale Computational Methods in Chemistry and Physics written by Achi Brandt. This book was released on 2001. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together interdisciplinary contributions ranging from applied mathematics, theoretical physics, quantum chemistry and molecular biology, all addressing various facets of the problem to connect the many different scales that one has to deal with in the computer simulation of many systems of interest in chemistry (e.g. polymeric materials, biological molecules, clusters, surface and interface structure). Particular emphasis is on the "multigrid technique" and its applications, ranging from electronic structure calculations to the statistical mechanics of polymers.

Computational Multiscale Modeling of Fluids and Solids

Download Computational Multiscale Modeling of Fluids and Solids PDF Online Free

Author :
Release : 2022-07-28
Genre : Science
Kind : eBook
Book Rating : 542/5 ( reviews)

GET EBOOK


Book Synopsis Computational Multiscale Modeling of Fluids and Solids by : Martin Oliver Steinhauser

Download or read book Computational Multiscale Modeling of Fluids and Solids written by Martin Oliver Steinhauser. This book was released on 2022-07-28. Available in PDF, EPUB and Kindle. Book excerpt: The expanded 3rd edition of this established textbook offers an updated overview and review of the computational physics techniques used in materials modelling over different length and time scales. It describes in detail the theory and application of some of the most important methods used to simulate materials across the various levels of spatial and temporal resolution. Quantum mechanical methods such as the Hartree-Fock approximation for solving the Schrödinger equation at the smallest spatial resolution are discussed as well as the Molecular Dynamics and Monte-Carlo methods on the micro- and meso-scale up to macroscopic methods used predominantly in the Engineering world such as Finite Elements (FE) or Smoothed Particle Hydrodynamics (SPH). Extensively updated throughout, this new edition includes additional sections on polymer theory, statistical physics and continuum theory, the latter being the basis of FE methods and SPH. Each chapter now first provides an overview of the key topics covered, with a new “key points” section at the end. The book is aimed at beginning or advanced graduate students who want to enter the field of computational science on multi-scales. It provides an in-depth overview of the basic physical, mathematical and numerical principles for modelling solids and fluids on the micro-, meso-, and macro-scale. With a set of exercises, selected solutions and several case studies, it is a suitable book for students in physics, engineering, and materials science, and a practical reference resource for those already using materials modelling and computational methods in their research.

Computational Multiscale Modeling of Fluids and Solids

Download Computational Multiscale Modeling of Fluids and Solids PDF Online Free

Author :
Release : 2008
Genre : Science
Kind : eBook
Book Rating : 165/5 ( reviews)

GET EBOOK


Book Synopsis Computational Multiscale Modeling of Fluids and Solids by : Martin Oliver Steinhauser

Download or read book Computational Multiscale Modeling of Fluids and Solids written by Martin Oliver Steinhauser. This book was released on 2008. Available in PDF, EPUB and Kindle. Book excerpt: The idea of the book is to provide a comprehensive overview of computational physics methods and techniques, that are used for materials modeling on different length and time scales. Each chapter first provides an overview of the physical basic principles which are the basis for the numerical and mathematical modeling on the respective length-scale. The book includes the micro-scale, the meso-scale and the macro-scale. The chapters follow this classification. The book will explain in detail many tricks of the trade of some of the most important methods and techniques that are used to simulate materials on the perspective levels of spatial and temporal resolution. Case studies are occasionally included to further illustrate some methods or theoretical considerations. Example applications for all techniques are provided, some of which are from the author’s own contributions to some of the research areas. Methods are explained, if possible, on the basis of the original publications but also references to standard text books established in the various fields are mentioned.

Multiscale Methods

Download Multiscale Methods PDF Online Free

Author :
Release : 2010
Genre : Mathematics
Kind : eBook
Book Rating : 853/5 ( reviews)

GET EBOOK


Book Synopsis Multiscale Methods by : Jacob Fish

Download or read book Multiscale Methods written by Jacob Fish. This book was released on 2010. Available in PDF, EPUB and Kindle. Book excerpt: Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.

Multiscale Modeling and Simulation in Science

Download Multiscale Modeling and Simulation in Science PDF Online Free

Author :
Release : 2009-02-11
Genre : Computers
Kind : eBook
Book Rating : 578/5 ( reviews)

GET EBOOK


Book Synopsis Multiscale Modeling and Simulation in Science by : Björn Engquist

Download or read book Multiscale Modeling and Simulation in Science written by Björn Engquist. This book was released on 2009-02-11. Available in PDF, EPUB and Kindle. Book excerpt: Most problems in science involve many scales in time and space. An example is turbulent ?ow where the important large scale quantities of lift and drag of a wing depend on the behavior of the small vortices in the boundarylayer. Another example is chemical reactions with concentrations of the species varying over seconds and hours while the time scale of the oscillations of the chemical bonds is of the order of femtoseconds. A third example from structural mechanics is the stress and strain in a solid beam which is well described by macroscopic equations but at the tip of a crack modeling details on a microscale are needed. A common dif?culty with the simulation of these problems and many others in physics, chemistry and biology is that an attempt to represent all scales will lead to an enormous computational problem with unacceptably long computation times and large memory requirements. On the other hand, if the discretization at a coarse level ignoresthe?nescale informationthenthesolutionwillnotbephysicallymeaningful. The in?uence of the ?ne scales must be incorporated into the model. This volume is the result of a Summer School on Multiscale Modeling and S- ulation in Science held at Boso ¤n, Lidingo ¤ outside Stockholm, Sweden, in June 2007. Sixty PhD students from applied mathematics, the sciences and engineering parti- pated in the summer school.

You may also like...