Share

Modular Medium-Voltage DC/DC Converter Based Systems

Download Modular Medium-Voltage DC/DC Converter Based Systems PDF Online Free

Author :
Release : 2014-08-21
Genre :
Kind : eBook
Book Rating : 716/5 ( reviews)

GET EBOOK


Book Synopsis Modular Medium-Voltage DC/DC Converter Based Systems by : Ahmed Aboushady

Download or read book Modular Medium-Voltage DC/DC Converter Based Systems written by Ahmed Aboushady. This book was released on 2014-08-21. Available in PDF, EPUB and Kindle. Book excerpt: A modular approach for connecting dc/dc converters is a technique proposed for constructing high power level converter architectures. The main advantages of a modular approach include, increased fault tolerance introduced by redundant modules, standardization of components leading to reduced manufacturing cost and time, power systems can be easily expanded, and higher power density of the overall system, especially with interleaving. System reliability is potentially improved due to redundancy but this must be traded off against the increased number of power electronic devices. Compared with direct series/parallel connection of power devices, modularity serves better when factors such as converter reconfiguration and power level scaling, as well as interleaving to reduce filter requirements, are considered. The main objective of this work is to design, analyse, model and control modular medium-power medium-voltage dc/dc converter based systems. A typical application considered for this modular approach is feeding subsea electrically actuated oil and gas production systems, from onshore terminals, but the proposed converter can be also applied to other applications.

Design, Analysis, and Modelling of Modular Medium-voltage DC/DC Converter Based Systems

Download Design, Analysis, and Modelling of Modular Medium-voltage DC/DC Converter Based Systems PDF Online Free

Author :
Release : 2012
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Design, Analysis, and Modelling of Modular Medium-voltage DC/DC Converter Based Systems by : Ahmed Adel Aboushady

Download or read book Design, Analysis, and Modelling of Modular Medium-voltage DC/DC Converter Based Systems written by Ahmed Adel Aboushady. This book was released on 2012. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates the design and analysis of modular medium-voltage dc/dc converter based systems. An emerging converter application is feeding offshore oil and gas production systems located in deep waters, on the sea bed, distant from the onshore terminal. The phase-controlled series-parallel resonant converter (SPRC) is selected as the dc/dc converter unit, for a 10kV dc transmission system. The converter has a high efficiency in addition to favourable soft switching characteristics offered by resonant converters which enable high frequency operation, hence designs with reduced footprints. The phase-controlled SPRC is studied in the steady-state and a new analysis is presented for the converter operational modes, voltage gain sensitivity, and analytically derived operational efficiency. The maximum efficiency criterion is used as the basis for selection of converter full load operational conditions. The detailed design of the output LC filter involves new mathematical expressions for interleaved multi-module operation. A novel large signal dynamic model is proposed for the phase-controlled SPRC with state feedback linearization. The model preserves converter large signal characteristics while providing a tool for faster simulation and simplified closed loop design and stability analysis. Using this model, a Kalman filter based estimator is proposed and applied for sensorless multi-loop output voltage control. The objective is to enhance the single-loop PI control dynamic response and closed loop stability with no additional sensors required for the inner loop state variables. Dynamic performance and robustness of the converter to operational circuit parameter variations are achieved with three new robust controllers; namely, Lyapunov, sliding mode, and predictive controllers. Finally, converter multi-module operation is studied, catering for voltage and current sharing of the subsea load-side step-down converter. To achieve a step-down voltage, the phase-controlled SPRC modules are connected in an input-series connection to share the medium level transmission voltage. Output-series and output-parallel connections are used to reach higher power levels. A new sensorless load voltage estimator is developed for converters remotely controlled. Matlab/Simulink simulations and experimental prototype results are used to substantiate all the proposed analysis techniques and control algorithms.

Modular Multilevel Converters

Download Modular Multilevel Converters PDF Online Free

Author :
Release : 2018-02-22
Genre : Science
Kind : eBook
Book Rating : 239/5 ( reviews)

GET EBOOK


Book Synopsis Modular Multilevel Converters by : Sixing Du

Download or read book Modular Multilevel Converters written by Sixing Du. This book was released on 2018-02-22. Available in PDF, EPUB and Kindle. Book excerpt: An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.

Design, Analysis, and Control of the Modular Multilevel DC/DC Converter for Medium- and High-voltage DC Grids

Download Design, Analysis, and Control of the Modular Multilevel DC/DC Converter for Medium- and High-voltage DC Grids PDF Online Free

Author :
Release : 2022
Genre : DC-to-DC converters
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Design, Analysis, and Control of the Modular Multilevel DC/DC Converter for Medium- and High-voltage DC Grids by : Ramin Razani

Download or read book Design, Analysis, and Control of the Modular Multilevel DC/DC Converter for Medium- and High-voltage DC Grids written by Ramin Razani. This book was released on 2022. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays, renewable energy sources have gained escalating importance due to environmental and economic reasons. However, these energy sources are primarily located in remote areas and distant from load centers. High-voltage dc (HVDC) and medium-voltage dc (MVDC) systems have been proposed in the last decades for efficient and reliable integration of renewable energy resources. To date, a noticeable number of these dc systems are established around the world. Recently, researchers have proposed the concept of "DC grids," which can be realized by connecting the existing point-to-point dc systems. This structure can improve the efficiency and stability of the power system. However, one of the most concerning challenges related to this concept is the interconnection of already built dc systems. Because existing dc systems are built through time, they possibly have different voltage levels and grounding systems. To address this challenge, the dc/dc modular multilevel converter (MMC) is proposed in the literature as one of the most promising solutions. This converter offers the advantages of modularity, scalability, and high efficiency. Few studies have been conducted on the modeling and control of the dc/dc MMC. The literature falls short in several aspects, such as improved design, analysis of operation limits, fault-tolerant operation, converter analysis under uncertainty, and development of advanced controllers and efficient fault-blocking capability. This research aims to 1) develop an augmented design approach that considers both control and hardware aspects of the converter, 2) investigate the operation limit of the hybrid dc/dc MMC caused by the capacitors voltages unbalance, 3) develop a tailored fault-tolerant operation strategy without additional submodules (SMs), 4) analyze the unsymmetrical operation of the dc/dc MMC caused by parametric uncertainty, 5) develop an advanced controller based on the model predictive control for the dc/dc MMC, and 6) realize an efficient fault-blocking capability by proper selection of SMs. The first study in this thesis facilitates the dc/dc MMC design with a smaller number of SMs and higher efficiency. Unlike the previous literature, the analytical results of the second study show that the capacitors voltages balance in the hybrid dc/dc MMC limits the operation range of the converter. In the third study, first, the unique features of the dc/dc MMC are investigated. These features make the fault-tolerant operation possible without the need for additional SMs. Then, utilizing these features, a tailored fault-tolerant operation strategy is developed to cope with several SMs failures. When the parametric uncertainty comes into action, it can force the converter to work in unsymmetrical conditions. The fourth study develops steady-state models representing the behavior of the converter in unsymmetrical conditions, and then the maximum tolerable variation of parameters is found in different practical cases. An advanced controller based on the model predictive control is developed in the fifth study to improve the steady-state and transient performances of the dc/dc MMC. Finally, an efficient fault-blocking capability is realized by adequately selecting the number and type of SMs. Detailed time-domain simulations under the MATLAB/Simulink environment validate the analytical results. This research contributed to the fundamental understanding of the dc/dc MMC operation and significantly improved the converter efficiency, reliability, and steady-state and dynamic performances.

High Voltage Direct Current Transmission

Download High Voltage Direct Current Transmission PDF Online Free

Author :
Release : 2019-07-01
Genre : Technology & Engineering
Kind : eBook
Book Rating : 614/5 ( reviews)

GET EBOOK


Book Synopsis High Voltage Direct Current Transmission by : Dragan Jovcic

Download or read book High Voltage Direct Current Transmission written by Dragan Jovcic. This book was released on 2019-07-01. Available in PDF, EPUB and Kindle. Book excerpt: Presents the latest developments in switchgear and DC/DC converters for DC grids, and includes substantially expanded material on MMC HVDC This newly updated edition covers all HVDC transmission technologies including Line Commutated Converter (LCC) HVDC; Voltage Source Converter (VSC) HVDC, and the latest VSC HVDC based on Modular Multilevel Converters (MMC), as well as the principles of building DC transmission grids. Featuring new material throughout, High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition offers several new chapters/sections including one on the newest MMC converters. It also provides extended coverage of switchgear, DC grid protection and DC/DC converters following the latest developments on the market and in research projects. All three HVDC technologies are studied in a wide range of topics, including: the basic converter operating principles; calculation of losses; system modelling, including dynamic modelling; system control; HVDC protection, including AC and DC fault studies; and integration with AC systems and fundamental frequency analysis. The text includes: A chapter dedicated to hybrid and mechanical DC circuit breakers Half bridge and full bridge MMC: modelling, control, start-up and fault management A chapter dedicated to unbalanced operation and control of MMC HVDC The advancement of protection methods for DC grids Wideband and high-order modeling of DC cables Novel treatment of topics not found in similar books, including SimPowerSystems models and examples for all HVDC topologies hosted by the 1st edition companion site. High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition serves as an ideal textbook for a graduate-level course or a professional development course.

You may also like...