Share

Microbial Diversity, Metabolic Potential, and Transcriptional Activity Along the Inner Continental Shelf of the Northeast Pacific Ocean

Download Microbial Diversity, Metabolic Potential, and Transcriptional Activity Along the Inner Continental Shelf of the Northeast Pacific Ocean PDF Online Free

Author :
Release : 2012
Genre : Anoxic zones
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Microbial Diversity, Metabolic Potential, and Transcriptional Activity Along the Inner Continental Shelf of the Northeast Pacific Ocean by : Anthony D. Bertagnolli

Download or read book Microbial Diversity, Metabolic Potential, and Transcriptional Activity Along the Inner Continental Shelf of the Northeast Pacific Ocean written by Anthony D. Bertagnolli. This book was released on 2012. Available in PDF, EPUB and Kindle. Book excerpt: Continental shelves located along eastern boundary currents occupy relatively small volumes of the world's oceans, yet are responsible for a large proportion of global primary production. The Oregon coast is among these ecosystems. Recent analyses of dissolved oxygen at shallow depths in the water column has suggested increasing episodes of hypoxia and anoxia, events that are detrimental to larger macro-faunal species. Microbial communities, however, are metabolically diverse, capable of utilizing alternative electron donors and acceptors, and can withstand transient periods of low dissolved oxygen. Understanding the phylogenetic and metabolic diversity of microorganisms in these environments is important for assessing the impact hypoxic events have on local and global biogeochemistry. Several molecular ecology tools were used to answer questions about the distribution patterns and activities of microorganisms residing along the coast of Oregon in this dissertation. Ribosomal rRNA fingerprinting and sequence analyses of samples collected during 2007-2008 suggested that bacterial community structure was not substantially influenced by changes in dissolved oxygen. However, substantial depth dependent changes were observed, with samples collected in the bottom boundary layer (BBL) displaying significant differences from those collected in the surface layer. Phylogenetic analyses of bacterial rRNA genes revealed novel phylotypes associated with this area of the water column, including groups with close evolutionary relationships to putative or characterized sulfur oxidizing bacteria (SOB). Analysis of metagenomes and metatranscriptomes collected during 2009 suggested increasing abundances of chemolithoautrophic organisms and their activities in the BBL. Thaumarchaea displayed significant depth dependent increases during the summer, and were detected at maximal frequencies during periods of hypoxia, suggesting that nitrification maybe influenced by local changes in dissolved oxygen. Metagenomic analysis of samples collected from 2010 revealed substantial variability in the metabolic potential of the microbial communities from different water masses. Samples collected during the spring, prior to upwelling clustered independently of those collected during the summer, during a period of upwelling, and did not display any clear stratification. Samples collected during the summer did cluster based on depth, consistent with previous observations, and increases in the relative abundances of chemolithotrophic gene suites were observed in the BBL during stratified conditions, suggesting that the metabolic potential for these processes is a repeatable feature along the Oregon coast. Overall, these observations suggest that depth impacts microbial community diversity, metabolic potential, and transcriptional activity in shallow areas of the Northeast Pacific Ocean. The increase in lithotrophic genes and transcripts in the BBL suggests that this microbial community includes many organisms that are able to use inorganic electron donors for respiration. We speculate that the dissolved organic material in the BBL is semi-labile and not available for immediate oxidation, favoring the growth for microorganisms that are able to use alternative electron donors.

Microbial Ecology in the North Pacific Subtropical Gyre

Download Microbial Ecology in the North Pacific Subtropical Gyre PDF Online Free

Author :
Release : 2018-11-16
Genre :
Kind : eBook
Book Rating : 463/5 ( reviews)

GET EBOOK


Book Synopsis Microbial Ecology in the North Pacific Subtropical Gyre by : Samuel T. Wilson

Download or read book Microbial Ecology in the North Pacific Subtropical Gyre written by Samuel T. Wilson. This book was released on 2018-11-16. Available in PDF, EPUB and Kindle. Book excerpt: The microbial community in the oligotrophic North Pacific Subtropical Gyre is dominated by unicellular microorganisms less than a few micrometers in size. Despite the persistent low nutrient concentrations, phytoplankton growth rates appear near maximal, sustained by the recycling of nutrients with plankton population sizes regulated by processes such as zooplankton grazing and viral lysis. Seasonal pulses of particle export to the deep sea and increases in phytoplankton abundance occur during the summer months; however, the factors that result in these imbalances in growth and loss processes are not well understood. Nonetheless, as a result of persistent fieldwork and development of sensitive methodologies, the biogeochemical and ecological dynamics occurring over timescales ranging from diel to interannual are being revealed. This Research Topic covers multiple aspects of microbial oceanography in the oligotrophic North Pacific Subtropical Gyre including identification and isolation of microorganisms, quantification of microbial biomass and turnover, metabolism and physiological activities, and microbial-mediated biogeochemical cycling. All of the papers use field data collected by either the Hawaii Ocean Time-series (HOT) program, the Center for Microbial Oceanography: Research and Education (C-MORE) or the Simons Collaboration on Ocean Processes and Ecology (SCOPE). These three programs have greatly increased our understanding of microbial ecology and biogeochemical cycling in the NPSG, in part by providing unparalleled access to the NPSG on oceanographic research vessels.

Dimensions of Microbial Biodiversity in the North Pacific Subtropical Gyre

Download Dimensions of Microbial Biodiversity in the North Pacific Subtropical Gyre PDF Online Free

Author :
Release : 2017
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Dimensions of Microbial Biodiversity in the North Pacific Subtropical Gyre by : Jessica A. Bryant

Download or read book Dimensions of Microbial Biodiversity in the North Pacific Subtropical Gyre written by Jessica A. Bryant. This book was released on 2017. Available in PDF, EPUB and Kindle. Book excerpt: Microorganisms support all life in the oceans and are fundamental to maintaining a habitable biosphere on Earth. However an understanding of their taxonomic and functional distributions across space and time are just beginning to emerge and numerous niches within the marine environment are still awaiting exploration. The motivation for this thesis is to improve our understanding of distributions of microbes and their metabolic potential at Station ALOHA, a long-term study site representative of the North Pacific Subtropical Gyre (NPSG). We observed changes in diversity and community composition at Station ALOHA across time, ocean depth and on plastic debris, a new anthropogenically derived niche in the NPSG. Despite surface waters only experiencing mild seasonal variation in the abiotic environment, using near monthly picoplankton samples collected across a 2-year period at 25m depth, we observed that microbial community composition correlated with solar irradiance, thereby demonstrating seasonal trends. Ocean surface microbes are known to differ fundamentally from those found in the ocean's interior, yet the nature of the transitions from shallow to deep surface water communities is not well understood. Using a high resolution depth series across twelve time points, we observed that microbial communities partitioned into four groups that consisted of all samples above the deep chlorophyll maximum (DCM), 125m samples below the DCM, all 200 m samples and all 500, 770 and 1000m samples. Our data also revealed a sharp discontinuity in genomic traits including GC%, genome size and proteome elemental composition spanning the DCM, suggesting that nitrogen limitation was key to shaping this sharp genomic transition zone across disparate clades. In contrast, we observed that plastic debris in the NPSG forms a habitat for complex microbial assemblages that have organisms, lifestyles and metabolic pathways that are distinct and potentially less nutrient limited than picoplankton in the surrounding water column. Taken together this work helps expand our understanding of spatial and temporal distributions of microorganisms at Station ALOHA and can help direct future microbial oceanography surveys, highlighting new directions for future research.

The Role of Macrobiota in Structuring Microbial Communities Along Rocky Shores

Download The Role of Macrobiota in Structuring Microbial Communities Along Rocky Shores PDF Online Free

Author :
Release : 2014
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis The Role of Macrobiota in Structuring Microbial Communities Along Rocky Shores by :

Download or read book The Role of Macrobiota in Structuring Microbial Communities Along Rocky Shores written by . This book was released on 2014. Available in PDF, EPUB and Kindle. Book excerpt: Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of the gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota.

Microbial Ecology in the North Pacific Subtropical Gyre

Download Microbial Ecology in the North Pacific Subtropical Gyre PDF Online Free

Author :
Release : 2018
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Microbial Ecology in the North Pacific Subtropical Gyre by :

Download or read book Microbial Ecology in the North Pacific Subtropical Gyre written by . This book was released on 2018. Available in PDF, EPUB and Kindle. Book excerpt: The microbial community in the oligotrophic North Pacific Subtropical Gyre is dominated by unicellular microorganisms less than a few micrometers in size. Despite the persistent low nutrient concentrations, phytoplankton growth rates appear near maximal, sustained by the recycling of nutrients with plankton population sizes regulated by processes such as zooplankton grazing and viral lysis. Seasonal pulses of particle export to the deep sea and increases in phytoplankton abundance occur during the summer months; however, the factors that result in these imbalances in growth and loss processes are not well understood. Nonetheless, as a result of persistent fieldwork and development of sensitive methodologies, the biogeochemical and ecological dynamics occurring over timescales ranging from diel to interannual are being revealed. This Research Topic covers multiple aspects of microbial oceanography in the oligotrophic North Pacific Subtropical Gyre including identification and isolation of microorganisms, quantification of microbial biomass and turnover, metabolism and physiological activities, and microbial-mediated biogeochemical cycling. All of the papers use field data collected by either the Hawaii Ocean Time-series (HOT) program, the Center for Microbial Oceanography: Research and Education (C-MORE) or the Simons Collaboration on Ocean Processes and Ecology (SCOPE). These three programs have greatly increased our understanding of microbial ecology and biogeochemical cycling in the NPSG, in part by providing unparalleled access to the NPSG on oceanographic research vessels.

You may also like...