Share

Metals and Metal-Based Electrocatalytic Materials for Alternative Energy Sources and Electronics

Download Metals and Metal-Based Electrocatalytic Materials for Alternative Energy Sources and Electronics PDF Online Free

Author :
Release : 2019
Genre : Electric batteries
Kind : eBook
Book Rating : 639/5 ( reviews)

GET EBOOK


Book Synopsis Metals and Metal-Based Electrocatalytic Materials for Alternative Energy Sources and Electronics by : Jasmina Stevanovic

Download or read book Metals and Metal-Based Electrocatalytic Materials for Alternative Energy Sources and Electronics written by Jasmina Stevanovic. This book was released on 2019. Available in PDF, EPUB and Kindle. Book excerpt: The important role of metals, their oxides and catalytically-interactive supports in contemporary investigations related to rational construction of next-generation devices as alternative energy sources and hi-tech electronics is ambitiously presented throughout this book. The topics involve: Carbonaceous and non-typical platinum-based nanostructured electrode materials as promising candidates for anodic reactions in low-temperature fuel cells. Ruthenium oxide as electroactive material, presented through its innovative synthesis routes involving microwave heating and ultrasonic spray pyrolysis, with the focus on its performances as an electrochemical supercapacitor, but also as a part of multicomponent electrode coating in electrocatalysis of chlorine and oxygen evolution. Alkaline water electrolysis as the simplest method for hydrogen production especially when using renewable energy sources, offering the advantage of simplicity and environmentally clean technology with zero emission of greenhouse gases. New frontiers in electroconductive composite materials and biopolymers combined with noble metal nanoparticles that can be used in nanoelectronics and medical nanotechnologies. The possibilities for the operational improvement of an aluminum-air battery presented through alternative modifications of an Al-anode by alloying with magnesium and electromagnetic bulk structure homogenization. The improvements of copper-based materials as well as the research toward sustainable production of copper itself as an important component for further development of electronic devices.

Electrocatalytic Materials

Download Electrocatalytic Materials PDF Online Free

Author :
Release :
Genre :
Kind : eBook
Book Rating : 023/5 ( reviews)

GET EBOOK


Book Synopsis Electrocatalytic Materials by : Santanu Patra

Download or read book Electrocatalytic Materials written by Santanu Patra. This book was released on . Available in PDF, EPUB and Kindle. Book excerpt:

Electrocatalytic Materials

Download Electrocatalytic Materials PDF Online Free

Author :
Release : 2025-01-05
Genre : Technology & Engineering
Kind : eBook
Book Rating : 010/5 ( reviews)

GET EBOOK


Book Synopsis Electrocatalytic Materials by : Santanu Patra

Download or read book Electrocatalytic Materials written by Santanu Patra. This book was released on 2025-01-05. Available in PDF, EPUB and Kindle. Book excerpt: This handbook focuses on electrocatalytic materials, a field that has experienced significant advancements in recent decades, primarily driven by nanoscale catalyst design improvements. These advancements have been crucial in the development and enhancement of alternative energy technologies relying on electrochemical reactions. Electrocatalytic materials play a vital role in reducing over-potentials required for electrochemical device operation. As a prominent subset of catalysts, they facilitate essential reactions for energy conversion and storage through electron transfer processes. However, studying electrocatalytic materials presents challenges due to complex reaction networks, diverse selectivity possibilities, and intricate reaction mechanisms. This book offers an extensive description of electrocatalysis and the materials used in electrocatalytic processes. It covers cutting-edge studies and in-depth discussions on the applications of electrocatalytic materials in energy conversion and storage (including fuel cells, water splitting, batteries, etc.), sensors, and other potential applications. It also addresses the broader implications of electrocatalysis in academia and industry. Each section of the book highlights the latest developments, contemporary challenges, and state-of-the-art investigations aimed at producing valuable outcomes for end users. With contributions from diverse experts, this comprehensive resource is essential for researchers, scientists, industrialists, educators, and students.

Designing Three-Dimensional Nanoporous Metal Alloys for Selective Electrochemical Conversion Catalysis

Download Designing Three-Dimensional Nanoporous Metal Alloys for Selective Electrochemical Conversion Catalysis PDF Online Free

Author :
Release : 2020
Genre : Chemical engineering
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Designing Three-Dimensional Nanoporous Metal Alloys for Selective Electrochemical Conversion Catalysis by : Swarnendu Chatterjee

Download or read book Designing Three-Dimensional Nanoporous Metal Alloys for Selective Electrochemical Conversion Catalysis written by Swarnendu Chatterjee. This book was released on 2020. Available in PDF, EPUB and Kindle. Book excerpt: The rising demands of clean energy owing to a burgeoning global population and deteriorating climate has given rise to new avenues of research in electrocatalysis focusing on extraction and storage of energy through electrochemical reactions. In contrast to heterogeneous catalysts, electrochemical catalysts often need to withstand harsh reaction environments with respect to electrolyte pH and applied overpotentials. The stability requirements constrain the breadth of applicable materials, limiting the viable catalysts to those composed of more noble metals, which are invariably more costly. The design of next generation electrocatalyst materials requires strategies to balance activity and stability while at the same time minimizing the utilization of expensive materials to limit costs. Open-framework nanocatalyst architectures show promise as they maximize surface area to volume ratios and their morphology and surface chemistry are readily tuned through controlled processing methodologies. Among the high aspect ratio, open-framework nanostructures, nanoporous metals obtained through dealloying offer a unique class of three dimensional electrode materials that are useful for a number of electrolytic processes owing to their conductive high surface area structure and tunable near surface composition. Herein, we study the porosity evolution processes in multimetallic alloys through classical dealloying and alternative methods, in pursuit of creating optimal bicontinuous nanoporous architectures for two important electrochemical reactions, central to the carbon and water cycles: CO2 reduction reaction (CO2RR) and oxygen evolution reaction (OER). To address the limitations of electrochemical dealloying for nanoporous metal synthesis, we first develop a new alternative method where we thermally decompose readily available transition metal dichalcogenides to create bicontinuous three dimensional metallic nanostructures. We show that spinodal decomposition with a proper balance of removal of the chalcogen component and surface diffusion of metal is possible that gives rise to uniform porosity length scales below 100 nm. Our new method is applicable to a broader range of materials including the refractory metals which are difficult to obtain in nanoporous bicontinuous form through conventional dealloying techniques. For CO2RR, we demonstrate favorable tuning of the near surface composition of core shell nanoporous alloys to mitigate a common problem in CO2 electrolysis which is the poisoning of electrocatalytic surface during long term reaction. CO2RR shows great promise as a remediation strategy to convert and store anthropogenic CO2. To realize its practical integration in industries with high CO2 emissions, uninterrupted activity of electrocatalyst is important at reasonable reaction timescales. Among the materials capable of electrochemically converting CO2 to formate which is a high energy density product, Palladium is unique in that it has shown substantial faradaic efficiency at minimal overpotential. Limiting its implementation, however, is its gradual deactivation through CO poisoning during constant potential CO2RR. Here, we show synthesis of core-shell nanoporous multi-metallic Pd alloys that display suppressed CO deactivation during formate production based on suitable choice of alloying component. The improvement in deactivation tolerance has been attributed to a combination of electronic impacts of subsurface alloying components as well as the composition dependent hydricity of the Pd alloys. The Pd skinned nanoporous alloys have been obtained by electrochemical dealloying where the high surface area electrode structure provides high formate partial current densities with minimal CO poisoning while not altering the formate selectivity at low CO2RR overpotentials. Aqueous CO2RR system also requires a stable electrocatalyst at the anode for the OER which requires stricter stability constraints for the electrocatalysts. OER is also the performance limiting component in the water splitting reactions of PEM electrolyzers. The oxidative potential of OER is difficult for many active materials to survive. In addition to the sluggish kinetics of the anodic OER, low catalyst stability and electrode conductivity lead to process inefficiencies. Higher valent oxidation states of Ir have been identified as the only materials that demonstrate a reasonable balance of activity and durability for acidic OER. Attempts to make nanoporous Ir employing dealloying for high surface area electrodes are limited owing to its strong tendency to make immobile oxides that defy morphology evolution through dealloying. Here we design a dealloying protocol to create unique nanoporous Ir morphologies, including porous nanosheets that exhibit sufficient activity and durability while displaying higher lateral and through-plane conductivity when compared to standard IrO2 catalysts. The metallic core of the nanoporous metal ligaments and absence of any binder/support result in low electrode and charge transfer resistances; ultimately giving rise to lower overpotential and improved electrochemically active surface area (ECSA) normalized current densities compared to IrO2. This thesis outlines the analysis of design of nanoporous core shell bicontinuous alloys and porous nanosheets through top down techniques for wide combinations of metals including the refractory metals which are difficult to obtain through existing dealloying methods. Nanoporous metal based electrodes show promise for utilization in high throughput CO2RR systems and PEM water electrolyzers both of which are important parts of renewable energy technologies.

Fundamentals of Electrocatalyst Materials and Interfacial Characterization

Download Fundamentals of Electrocatalyst Materials and Interfacial Characterization PDF Online Free

Author :
Release : 2019-02-26
Genre : Technology & Engineering
Kind : eBook
Book Rating : 093/5 ( reviews)

GET EBOOK


Book Synopsis Fundamentals of Electrocatalyst Materials and Interfacial Characterization by : Nicolas Alonso-Vante

Download or read book Fundamentals of Electrocatalyst Materials and Interfacial Characterization written by Nicolas Alonso-Vante. This book was released on 2019-02-26. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses some essential topics in the science of energy converting devices emphasizing recent aspects of nano-derived materials in the application for the protection of the environment, storage, and energy conversion. The aim, therefore, is to provide the basic background knowledge. The electron transfer process and structure of the electric double layer and the interaction of species with surfaces and the interaction, reinforced by DFT theory for the current and incoming generation of fuel cell scientists to study the interaction of the catalytic centers with their supports. The chief focus of the chapters is on materials based on precious and non-precious centers for the hydrogen electrode, the oxygen electrode, energy storage, and in remediation applications, where the common issue is the rate-determining step in multi-electron charge transfer processes in electrocatalysis. These approaches are used in a large extent in science and technology, so that each chapter demonstrates the connection of electrochemistry, in addition to chemistry, with different areas, namely, surface science, biochemistry, chemical engineering, and chemical physics.

You may also like...