Share

Mechanical Signaling in Plants: From Perception to Consequences for Growth and Morphogenesis (Thigmomorphogenesis) and Ecological Significance

Download Mechanical Signaling in Plants: From Perception to Consequences for Growth and Morphogenesis (Thigmomorphogenesis) and Ecological Significance PDF Online Free

Author :
Release : 2017-01-27
Genre :
Kind : eBook
Book Rating : 740/5 ( reviews)

GET EBOOK


Book Synopsis Mechanical Signaling in Plants: From Perception to Consequences for Growth and Morphogenesis (Thigmomorphogenesis) and Ecological Significance by : Catherine Coutand

Download or read book Mechanical Signaling in Plants: From Perception to Consequences for Growth and Morphogenesis (Thigmomorphogenesis) and Ecological Significance written by Catherine Coutand. This book was released on 2017-01-27. Available in PDF, EPUB and Kindle. Book excerpt: During the 1970s, renewed interest in plant mechanical signaling led to the discovery that plants subjected to mechanical stimulation develop shorter and thicker axes than undisturbed plants, a syndrome called thigmomorphogenesis. Currently, mechanosensing is being intensively studied because of its involvement in many physiological processes in plants and particularly in the control of plant morphogenesis. From an ecological point of view, the shaping of plant architecture has to be precisely organized in space to ensure light capture as well as mechanical stability. In natural environments terrestrial plants are subjected to mechanical stimulation mainly due to wind, but also due to precipitation, while aquatic and marine plants are subjected to current and wave energy. Plants acclimate to mechanically challenging environments by sensing mechanical stimulations and modifying their growth in length and diameter and their tissue properties to reduce potential for buckling or breakage. From a morphogenetic point of view, both external and internal mechanical cues play an important role in the control of cell division and meristem development likely by modulating microtubule orientation. How mechanical stimulations are being sensed by plants is an area of intense research. Different types of mechanosensors have been discovered or proposed, including ion channels gated by membrane tension (stretch activation) and plasma membrane receptor-like kinases that monitor the cell wall deformations. Electrophysiologists have measured the conductances of some stretch-activated channels and have showed that SAC of different structures can exhibit different conductances. The role of these differences in conductance has not yet been established. Once a mechanical stimulus has been perceived, it must be converted into a biological signal that can lead to variations of plant phenotype. Calcium has been shown to function as an early second messenger, tightly linked with changes in cytosolic and apoplastic pH. Transcriptional analyses of the effect of mechanical stimulation have revealed a considerable number of differentially expressed genes, some of which appear to be specific to mechanical signal transduction. These genes can thus serve as markers of mechanosensing, for example, in studies attempting to define signalling threshold, or variations of mechanosensitivity (accommodation). Quantitative biomechanical studies have lead to a model of mechanoperception which links mechanical state and plant responses, and provides an integrative tool to study the regulation of mechanosensing. This model includes parameters (sensitivity and threshold) that can be estimated experimentally. It has also been shown that plants are desensitized when exposed to multiple mechanical signals as a function of their mechanical history. Finally, mechanosensing is also involved in osmoregulation or cell expansion. The links between these different processes involving mechanical signalling need further investigation. This frontier research topic provides an overview of the different aspects of mechanical signaling in plants, spanning perception, effects on plant growth and morphogenesis, and broad ecological significance.

Mechanical Signaling in Plants: From Perception to Consequences for Growth and Morphogenesis (Thigmomorphogenesis) and Ecological Significance

Download Mechanical Signaling in Plants: From Perception to Consequences for Growth and Morphogenesis (Thigmomorphogenesis) and Ecological Significance PDF Online Free

Author :
Release : 2017
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Mechanical Signaling in Plants: From Perception to Consequences for Growth and Morphogenesis (Thigmomorphogenesis) and Ecological Significance by :

Download or read book Mechanical Signaling in Plants: From Perception to Consequences for Growth and Morphogenesis (Thigmomorphogenesis) and Ecological Significance written by . This book was released on 2017. Available in PDF, EPUB and Kindle. Book excerpt: During the 1970s, renewed interest in plant mechanical signaling led to the discovery that plants subjected to mechanical stimulation develop shorter and thicker axes than undisturbed plants, a syndrome called thigmomorphogenesis. Currently, mechanosensing is being intensively studied because of its involvement in many physiological processes in plants and particularly in the control of plant morphogenesis. From an ecological point of view, the shaping of plant architecture has to be precisely organized in space to ensure light capture as well as mechanical stability. In natural environments terrestrial plants are subjected to mechanical stimulation mainly due to wind, but also due to precipitation, while aquatic and marine plants are subjected to current and wave energy. Plants acclimate to mechanically challenging environments by sensing mechanical stimulations and modifying their growth in length and diameter and their tissue properties to reduce potential for buckling or breakage. From a morphogenetic point of view, both external and internal mechanical cues play an important role in the control of cell division and meristem development likely by modulating microtubule orientation. How mechanical stimulations are being sensed by plants is an area of intense research. Different types of mechanosensors have been discovered or proposed, including ion channels gated by membrane tension (stretch activation) and plasma membrane receptor-like kinases that monitor the cell wall deformations. Electrophysiologists have measured the conductances of some stretch-activated channels and have showed that SAC of different structures can exhibit different conductances. The role of these differences in conductance has not yet been established. Once a mechanical stimulus has been perceived, it must be converted into a biological signal that can lead to variations of plant phenotype. Calcium has been shown to function as an early second messenger, tightly linked with changes in cytosolic and apoplastic pH. Transcriptional analyses of the effect of mechanical stimulation have revealed a considerable number of differentially expressed genes, some of which appear to be specific to mechanical signal transduction. These genes can thus serve as markers of mechanosensing, for example, in studies attempting to define signalling threshold, or variations of mechanosensitivity (accommodation). Quantitative biomechanical studies have lead to a model of mechanoperception which links mechanical state and plant responses, and provides an integrative tool to study the regulation of mechanosensing. This model includes parameters (sensitivity and threshold) that can be estimated experimentally. It has also been shown that plants are desensitized when exposed to multiple mechanical signals as a function of their mechanical history. Finally, mechanosensing is also involved in osmoregulation or cell expansion. The links between these different processes involving mechanical signalling need further investigation. This frontier research topic provides an overview of the different aspects of mechanical signaling in plants, spanning perception, effects on plant growth and morphogenesis, and broad ecological significance.During the 1970s, renewed interest in plant mechanical signaling led to the discovery that plants subjected to mechanical stimulation develop shorter and thicker axes than undisturbed plants, a syndrome called thigmomorphogenesis. Currently, mechanosensing is being intensively studied because of its involvement in many physiological processes in plants and particularly in the control of plant morphogenesis. From an ecological point of view, the shaping of plant architecture has to be precisely organized in space to ensure light capture as well as mechanical stability. In natural environments terrestrial plants are subjected to mechanical stimulation mainly due to wind, but also due to precipitation, while aquatic and marine plants are subjected to current and wave energy. Plants acclimate to mechanically challenging environments by sensing mechanical stimulations and modifying their growth in length and diameter and their tissue properties to reduce potential for buckling or breakage. From a morphogenetic point of view, both external and internal mechanical cues play an important role in the control of cell division and meristem development likely by modulating microtubule orientation. How mechanical stimulations are being sensed by plants is an area of intense research. Different types of mechanosensors have been discovered or proposed, including ion channels gated by membrane tension (stretch activation) and plasma membrane receptor-like kinases that monitor the cell wall deformations. Electrophysiologists have measured the conductances of some stretch-activated channels and have showed that SAC of different structures can exhibit different conductances. The role of these differences in conductance has not yet been established. Once a mechanical stimulus has been perceived, it must be converted into a biological signal that can lead to variations of plant phenotype. Calcium has been shown to function as an early second messenger, tightly linked with changes in cytosolic and apoplastic pH. Transcriptional analyses of the effect of mechanical stimulation have revealed a considerable number of differentially expressed genes, some of which appear to be specific to mechanical signal transduction. These genes can thus serve as markers of mechanosensing, for example, in studies attempting to define signalling threshold, or variations of mechanosensitivity (accommodation). Quantitative biomechanical studies have lead to a model of mechanoperception which links mechanical state and plant responses, and provides an integrative tool to study the regulation of mechanosensing. This model includes parameters (sensitivity and threshold) that can be estimated experimentally. It has also been shown that plants are desensitized when exposed to multiple mechanical signals as a function of their mechanical history. Finally, mechanosensing is also involved in osmoregulation or cell expansion. The links between these different processes involving mechanical signalling need further investigation. This frontier research topic provides an overview of the different aspects of mechanical signaling in plants, spanning perception, effects on plant growth and morphogenesis, and broad ecological significance.

Mechanical Integration of Plant Cells and Plants

Download Mechanical Integration of Plant Cells and Plants PDF Online Free

Author :
Release : 2011-06-28
Genre : Science
Kind : eBook
Book Rating : 91X/5 ( reviews)

GET EBOOK


Book Synopsis Mechanical Integration of Plant Cells and Plants by : Przemyslaw Wojtaszek

Download or read book Mechanical Integration of Plant Cells and Plants written by Przemyslaw Wojtaszek. This book was released on 2011-06-28. Available in PDF, EPUB and Kindle. Book excerpt: Chemical reactions and interactions between molecules are commonly considered the basis of life, and thus the biochemical nature of cells and organisms is relatively well recognized. Research conducted in recent years, however, increasingly indicates that physical forces profoundly affect the functioning of life at all levels of its organization. To detect and to respond to such forces, plant cells and plants need to be structured mechanically. This volume focuses on mechanical aspects of plant life. It starts with a consideration of the mechanical integration of supracellular structures and mechanical properties of cellular building blocks to show how the structural integrity of plant cells is achieved and maintained during growth and development. The following chapters reveal how the functioning of integrated plant cells contributes to the mechanical integration of plants, and how the latter are able to detect physical stimuli and to reorganize their own cells in response to them. The mechanical aspects of plant responses to stresses are also presented. Finally, all these aspects are placed in an evolutionary context.

Horticultural Reviews, Volume 47

Download Horticultural Reviews, Volume 47 PDF Online Free

Author :
Release : 2019-11-18
Genre : Science
Kind : eBook
Book Rating : 343/5 ( reviews)

GET EBOOK


Book Synopsis Horticultural Reviews, Volume 47 by : Ian Warrington

Download or read book Horticultural Reviews, Volume 47 written by Ian Warrington. This book was released on 2019-11-18. Available in PDF, EPUB and Kindle. Book excerpt: Horticultural Reviews presents state-of-the-art reviews on topics in horticultural science and technology covering both basic and applied research. Topics covered include the horticulture of fruits, vegetables, nut crops, and ornamentals. These review articles, written by world authorities, bridge the gap between the specialized researcher and the broader community of horticultural scientists and teachers.

Ecology and Biomechanics

Download Ecology and Biomechanics PDF Online Free

Author :
Release : 2006-01-13
Genre : Nature
Kind : eBook
Book Rating : 590/5 ( reviews)

GET EBOOK


Book Synopsis Ecology and Biomechanics by : Anthony Herrel

Download or read book Ecology and Biomechanics written by Anthony Herrel. This book was released on 2006-01-13. Available in PDF, EPUB and Kindle. Book excerpt: We live in a well-engineered universe. This engineering is present in every system and organism in existence, including in the actions and interactions of plants and animals. In fact, one could say that the function and movement of plants and animals is just as much a part of their makeup as chlorophyll and fiber or bone and blood. Consequently, if

You may also like...