Share

Mathematical Modeling of Biological Systems, Volume II

Download Mathematical Modeling of Biological Systems, Volume II PDF Online Free

Author :
Release : 2007-10-12
Genre : Mathematics
Kind : eBook
Book Rating : 56X/5 ( reviews)

GET EBOOK


Book Synopsis Mathematical Modeling of Biological Systems, Volume II by : Andreas Deutsch

Download or read book Mathematical Modeling of Biological Systems, Volume II written by Andreas Deutsch. This book was released on 2007-10-12. Available in PDF, EPUB and Kindle. Book excerpt: Volume II of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. Highlighted throughout are mathematical and computational apporaches to examine central problems in the life sciences, ranging from the organization principles of individual cells to the dynamics of large populations. The chapters are thematically organized into the following main areas: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods and education. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.

Mathematical Modeling in Systems Biology

Download Mathematical Modeling in Systems Biology PDF Online Free

Author :
Release : 2022-06-07
Genre : Science
Kind : eBook
Book Rating : 829/5 ( reviews)

GET EBOOK


Book Synopsis Mathematical Modeling in Systems Biology by : Brian P. Ingalls

Download or read book Mathematical Modeling in Systems Biology written by Brian P. Ingalls. This book was released on 2022-06-07. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.

Modeling Life

Download Modeling Life PDF Online Free

Author :
Release : 2017-09-06
Genre : Mathematics
Kind : eBook
Book Rating : 310/5 ( reviews)

GET EBOOK


Book Synopsis Modeling Life by : Alan Garfinkel

Download or read book Modeling Life written by Alan Garfinkel. This book was released on 2017-09-06. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?

Mathematical Modeling of Biological Systems, Volume II

Download Mathematical Modeling of Biological Systems, Volume II PDF Online Free

Author :
Release : 2007-10-12
Genre : Mathematics
Kind : eBook
Book Rating : 564/5 ( reviews)

GET EBOOK


Book Synopsis Mathematical Modeling of Biological Systems, Volume II by : Andreas Deutsch

Download or read book Mathematical Modeling of Biological Systems, Volume II written by Andreas Deutsch. This book was released on 2007-10-12. Available in PDF, EPUB and Kindle. Book excerpt: Volume II of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. Highlighted throughout are mathematical and computational apporaches to examine central problems in the life sciences, ranging from the organization principles of individual cells to the dynamics of large populations. The chapters are thematically organized into the following main areas: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods and education. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.

Modeling Biological Systems:

Download Modeling Biological Systems: PDF Online Free

Author :
Release : 2005-05-06
Genre : Science
Kind : eBook
Book Rating : 113/5 ( reviews)

GET EBOOK


Book Synopsis Modeling Biological Systems: by : James W. Haefner

Download or read book Modeling Biological Systems: written by James W. Haefner. This book was released on 2005-05-06. Available in PDF, EPUB and Kindle. Book excerpt: I Principles 1 1 Models of Systems 3 1. 1 Systems. Models. and Modeling . . . . . . . . . . . . . . . . . . . . 3 1. 2 Uses of Scientific Models . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 3 Example: Island Biogeography . . . . . . . . . . . . . . . . . . . . . 6 1. 4 Classifications of Models . . . . . . . . . . . . . . . . . . . . . . . . 10 1. 5 Constraints on Model Structure . . . . . . . . . . . . . . . . . . . . . 12 1. 6 Some Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1. 7 Misuses of Models: The Dark Side . . . . . . . . . . . . . . . . . . . 13 1. 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 The Modeling Process 17 2. 1 Models Are Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. 2 Two Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . 18 2. 3 An Example: Population Doubling Time . . . . . . . . . . . . . . . . 24 2. 4 Model Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2. 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Qualitative Model Formulation 32 3. 1 How to Eat an Elephant . . . . . . . . . . . . . . . . . . . . . . . . . 32 3. 2 Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3. 3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3. 4 Errors in Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . 44 3. 5 Advantages and Disadvantages of Forrester Diagrams . . . . . . . . . 44 3. 6 Principles of Qualitative Formulation . . . . . . . . . . . . . . . . . . 45 3. 7 Model Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 8 Other Modeling Problems . . . . . . . . . . . . . . . . . . . . . . . . 49 viii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 9 Exercises 53 4 Quantitative Model Formulation: I 4. 1 From Qualitative to Quantitative . . . . . . . . . . . . . . . . . Finite Difference Equations and Differential Equations 4. 2 . . . . . . . . . . . . . . . . 4. 3 Biological Feedback in Quantitative Models . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 4 Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 5 Exercises 5 Quantitative Model Formulation: I1 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 1 Physical Processes 81 . . . . . . . . . . . . . . . 5. 2 Using the Toolbox of Biological Processes 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 3 Useful Functions 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 4 Examples 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 5 Exercises 104 6 Numerical Techniques 107 . . . . . . . . . . . . . . . . . . . . . . . 6. 1 Mistakes Computers Make 107 . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 2 Numerical Integration 110 . . . . . . . . . . . . . . . . 6. 3 Numerical Instability and Stiff Equations 115 . . . . . . . . . . . . . .

You may also like...