Share

Materials Science and Design for Germanium Monolithic Light Source on Silicon

Download Materials Science and Design for Germanium Monolithic Light Source on Silicon PDF Online Free

Author :
Release : 2014
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Materials Science and Design for Germanium Monolithic Light Source on Silicon by : Yan Cai (Ph. D.)

Download or read book Materials Science and Design for Germanium Monolithic Light Source on Silicon written by Yan Cai (Ph. D.). This book was released on 2014. Available in PDF, EPUB and Kindle. Book excerpt: Germanium (Ge) is an optically active material with the advantages of Si-CMOS compatibility and monolithic integration. It has great potential to be used as the light emitter for Si photonics. Tensile strain and n-type doping are two key properties in Ge to achieve optical gain. This thesis mainly focuses on: (1) physical understandings of the threshold behavior of Ge-on-Si bulk laser and the temperature dependent performance; (2) process developments to grow and planarize the epitaxial Ge on Si in oxide trenches and corners; (3) introduction of n-type dopant into Ge-on-Si thin films while studying the threading dislocation behavior in n-Ge during annealing; (4) Design an external cavity Ge laser integrated with Si waveguides for a low threshold current and single mode operation. Heavy n-type doping was observed to change the Ge electronic band structure by band gap narrowing effect. We also found a failure of using a simple Drude model to explain free carrier absorption in n-Ge. We modified the optical gain simulation based on the above two observations in Ge. We found a broad gain bandwidth of ~ 200 nm from 1550 nm to 1750 nm and a higher net materials gain. We predicted a theoretical lasing threshold current density of 5~10 kA/cm2 in the bulk Ge laser device with the n-type doping of mid-1019 cm-3 at room temperature. We also predicted the Ge laser device would have better temperature stability regarding the threshold current compared to the III-V laser. Single crystalline Ge was epitaxial grown on Si in oxide trenches using ultra high vacuum chemical vapor deposition. The selective growth lead to the faceting in Ge because of the different growth rates of crystal orientations. We developed a suitable photolithography and oxide etch process to get the vertical oxide sidewall for Ge trench filling. We also tested the Ge growth in the T-shape corners to improve the reflectivity at the waveguide end. The T-shape structure was also useful for the Ge/Si waveguide coupling in the external cavity laser. Furthermore, we developed a chemical mechanical polishing (CMP) process for the over-grown Ge waveguides. The Ge CMP process was selective to oxide, flexible to change in the CMP rate by DI water dilution and controllable for a minimum dishing of Ge in the oxide trenches. N-type doping helped to increase the direct band transition in Ge for light emission. We developed a delta-doping method to grow a dopant source called "delta doping layer" on the single crystalline Ge layer without introducing extra defects. We then used rapid thermal annealing to drive the dopant into the underlying Ge layer. The dopant enhanced diffusion was discovered to speed up the drive-in process. The active n-type concentration in Ge could reach up to 5×1019 cm-3 using the delta doping source and annealing process. Since the dopant source layer had a disrupted Ge growth, we used the developed CMP process to remove it after the dopant drive-in. A comprehensive dopant diffusion simulation was developed to predict the annealing temperature and time to achieve high n-type doping and uniform distribution. We used plan-view transmission electron microscopy to examine the threading dislocation density (TDD) in n-Ge for both blanket films and trench grown waveguides. We found a high TDD of ~ 1×108cm-2 in 1 [mu]m thick blanket Ge with doping of 3×1018 cm-3 after high temperature annealing at 850 °C for 40 min. The TDD is 1×109 cm-2 in the 300 nm thick and 1 [mu]m wide Ge waveguide. We examined the effects of annealing temperature, Ge thickness, Si/Ge inter-diffusion and trench width on the threading dislocation behavior. However, we have not found the exact reason causing the high TDD and therefore, further study is required on the TDD reduction for the Ge waveguide. Finally, we designed an external cavity Ge laser using distributed Bragg reflector (DBR) gratings on Si waveguides. A detailed discussion on the cross section design was presented to mitigate the internal optical loss from claddings and metal layers and to improve the current injection uniformity across the Ge waveguide. The aim of the DBR grating design was to achieve a single mode operation by controlling the full width half maximum of the grating reflectance spectrum. We also discussed the coupling between Ge and Si waveguides and different designs were presented to increase the coupling efficiency.

Photonics and Electronics with Germanium

Download Photonics and Electronics with Germanium PDF Online Free

Author :
Release : 2015-05-06
Genre : Science
Kind : eBook
Book Rating : 229/5 ( reviews)

GET EBOOK


Book Synopsis Photonics and Electronics with Germanium by : Kazumi Wada

Download or read book Photonics and Electronics with Germanium written by Kazumi Wada. This book was released on 2015-05-06. Available in PDF, EPUB and Kindle. Book excerpt: Representing a further step towards enabling the convergence of computing and communication, this handbook and reference treats germanium electronics and optics on an equal footing. Renowned experts paint the big picture, combining both introductory material and the latest results. The first part of the book introduces readers to the fundamental properties of germanium, such as band offsets, impurities, defects and surface structures, which determine the performance of germanium-based devices in conjunction with conventional silicon technology. The second part covers methods of preparing and processing germanium structures, including chemical and physical vapor deposition, condensation approaches and chemical etching. The third and largest part gives a broad overview of the applications of integrated germanium technology: waveguides, photodetectors, modulators, ring resonators, transistors and, prominently, light-emitting devices. An invaluable one-stop resource for both researchers and developers.

Handbook of Silicon Photonics

Download Handbook of Silicon Photonics PDF Online Free

Author :
Release : 2016-04-19
Genre : Science
Kind : eBook
Book Rating : 116/5 ( reviews)

GET EBOOK


Book Synopsis Handbook of Silicon Photonics by : Laurent Vivien

Download or read book Handbook of Silicon Photonics written by Laurent Vivien. This book was released on 2016-04-19. Available in PDF, EPUB and Kindle. Book excerpt: The development of integrated silicon photonic circuits has recently been driven by the Internet and the push for high bandwidth as well as the need to reduce power dissipation induced by high data-rate signal transmission. To reach these goals, efficient passive and active silicon photonic devices, including waveguide, modulators, photodetectors,

Silicon Germanium Materials and Devices - A Market and Technology Overview to 2006

Download Silicon Germanium Materials and Devices - A Market and Technology Overview to 2006 PDF Online Free

Author :
Release : 2002-11-26
Genre : Business & Economics
Kind : eBook
Book Rating : 216/5 ( reviews)

GET EBOOK


Book Synopsis Silicon Germanium Materials and Devices - A Market and Technology Overview to 2006 by : R. Szweda

Download or read book Silicon Germanium Materials and Devices - A Market and Technology Overview to 2006 written by R. Szweda. This book was released on 2002-11-26. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of Silicon Germanium Materials & Devices - A Market & Technology Overview to 2006 examines the development of the silicon germanium business over a six-year period 2001 to 2006. It analyses the trends in markets, technologies and industry structure and profiles all the major players. It is specifically aimed at users and manufacturers of substrates, epiwafers, equipment and devices. The analysis includes a competitive assessment of the market of silicon germanium vs. gallium arsenide, indium phosphide vs. other forms of silicon. Silicon Germanium Materials & Devices - A Market & Technology Overview to 2006 is designed to assist with business plans, R&D and manufacturing strategies. It will be an indispensable aid for managers responsible for business development, technology assessment and market research. The report examines the rapid development of silicon germanium from an R&D curiosity to production status. An extensive treatment from materials through processes to devices and applications it encapsulates the entire silicon germanium business of today and assesses future directions. For a PDF version of the report please call Tina Enright on +44 (0) 1865 843008 for price details.

Silicon, Germanium, and Their Alloys

Download Silicon, Germanium, and Their Alloys PDF Online Free

Author :
Release : 2014-12-09
Genre : Science
Kind : eBook
Book Rating : 648/5 ( reviews)

GET EBOOK


Book Synopsis Silicon, Germanium, and Their Alloys by : Gudrun Kissinger

Download or read book Silicon, Germanium, and Their Alloys written by Gudrun Kissinger. This book was released on 2014-12-09. Available in PDF, EPUB and Kindle. Book excerpt: Despite the vast knowledge accumulated on silicon, germanium, and their alloys, these materials still demand research, eminently in view of the improvement of knowledge on silicon–germanium alloys and the potentialities of silicon as a substrate for high-efficiency solar cells and for compound semiconductors and the ongoing development of nanodevices based on nanowires and nanodots. Silicon, Germanium, and Their Alloys: Growth, Defects, Impurities, and Nanocrystals covers the entire spectrum of R&D activities in silicon, germanium, and their alloys, presenting the latest achievements in the field of crystal growth, point defects, extended defects, and impurities of silicon and germanium nanocrystals. World-recognized experts are the authors of the book’s chapters, which span bulk, thin film, and nanostructured materials growth and characterization problems, theoretical modeling, crystal defects, diffusion, and issues of key applicative value, including chemical etching as a defect delineation technique, the spectroscopic analysis of impurities, and the use of devices as tools for the measurement of materials quality.

You may also like...