Share

Investigating the Interstellar Medium Conditions of Star Formation in High Redshift Galaxies by Studying Dust Emission and Emission Lines

Download Investigating the Interstellar Medium Conditions of Star Formation in High Redshift Galaxies by Studying Dust Emission and Emission Lines PDF Online Free

Author :
Release : 2015
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Investigating the Interstellar Medium Conditions of Star Formation in High Redshift Galaxies by Studying Dust Emission and Emission Lines by : Jorge González López

Download or read book Investigating the Interstellar Medium Conditions of Star Formation in High Redshift Galaxies by Studying Dust Emission and Emission Lines written by Jorge González López. This book was released on 2015. Available in PDF, EPUB and Kindle. Book excerpt:

Physical Conditions of the Interstellar Medium in High-redshift Submillimetre Bright Galaxies

Download Physical Conditions of the Interstellar Medium in High-redshift Submillimetre Bright Galaxies PDF Online Free

Author :
Release : 2017
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Physical Conditions of the Interstellar Medium in High-redshift Submillimetre Bright Galaxies by : Chentao Yang

Download or read book Physical Conditions of the Interstellar Medium in High-redshift Submillimetre Bright Galaxies written by Chentao Yang. This book was released on 2017. Available in PDF, EPUB and Kindle. Book excerpt: The discovery of a population of high-redshift dust-obscured submillimeter galaxies (SMGs) from ground-based submm cameras has revolutionised our understanding of galaxy evolution and star formation in extreme conditions. They are the strongest starbursts in the Universe approaching the Eddington limit and are believed to be the progenitors of the most massive galaxies today. However, theoretical models of galaxy evolution have even been challenged by a large number of detections of high-redshift high-redshift SMGs. A very few among them are gravitationally lensed by an intervening galaxy. Recent wide-area extragalactic surveys have discovered hundreds of such strongly lensed SMGs, opening new exciting opportunities for observing the interstellar medium in these exceptional objects.We have thus carefully selected a sample of strongly gravitational lensed SMGs based on the submm flux limit from the Herschel-ATLAS sample. Using IRAM telescopes, we have built a rich H2 O-line-detected sample of 16 SMGs. We found a close-to-linear tight correlation between the H2O line and total infrared luminosity. This indicates the importance of far-IR pumping to the excitation of the H2O lines. Using a far-IR pumping model, we have derived the physical properties of the H2O gas and the dust. We showed that H2O lines trace a warm dense gas that may be closely related to the active star formation. Along with the H2O lines, several H2O+ lines have also been detected in three of our SMGs. We also find a tight correlation between the luminosity of the lines of H2O and H2O+ from local ULIRGs to high-redshift SMGs. The flux ratio between H2O+ and H2O suggests that cosmic rays from strong star forming activities are possibly driving the related oxygen chemistry.Another important common molecular gas tracer is the CO line. We have observed multiple transitions of the CO lines in each of our SMGs with IRAM30m telescope. By analysing the CO line profile, we discovered a significant differential lensing effect that might cause underestimation of the linewidth by a factor of ~2. Using LVG modelling and fitting the multi-J CO fluxes via a Bayesian approach, we derived gas densities and temperature, and CO column density per unit velocity gradient. We then found a correlation between the gas thermal pressure and the star formation efficiency. We have also studied the global properties of the molecular gas and its relationship with star formation. We have derived the gas to dust mass ratio and the gas depletion time, they show no difference compared with other SMGs. With the detections of atomic carbon lines in our SMGs, we extended the local linear correlation between the CO and CI line luminosity. Finally, we compared the linewidths of the CO and H2O emission line, which agree very well with each other. This suggests that the emitting regions of these two molecules are likely to be co-spatially located.In order to understand the properties of molecular emission in high-redshift SMGs, and more generally, the structure and the dynamical properties of these galaxies, it is crucial to acquire high-resolution images. We thus observed two of our brightest source with ALMA and NOEMA interferometers using their high spatial resolution configuration. These images have allowed us to reconstruct the intrinsic morphology of the sources. We compared the CO, H2O and dust emission. The cold dust emission has a smaller size compared with the CO and H2O gas, while the latter two are similar in size. By fitting the dynamical model to the CO data of the source, we have shown that the source can be modelled with a rotating disk. We derived the projected dynamical mass and the effective radius of those sources.With the future NOEMA and ALMA, we will be able to extend such kind of observations to a larger sample lensed SMGs and even to unlensed SMGs, to study various gas tracers, and to understand the physical conditions of the ISM and their relation to the star formation.

Star Formation, Galaxies and the Interstellar Medium

Download Star Formation, Galaxies and the Interstellar Medium PDF Online Free

Author :
Release : 1993-06-10
Genre : Science
Kind : eBook
Book Rating : 125/5 ( reviews)

GET EBOOK


Book Synopsis Star Formation, Galaxies and the Interstellar Medium by : Jose Franco

Download or read book Star Formation, Galaxies and the Interstellar Medium written by Jose Franco. This book was released on 1993-06-10. Available in PDF, EPUB and Kindle. Book excerpt: The enormously powerful phenomena of starbursts are examined in this book. These spectacular star-forming events are seen on large scales in some galaxies, often triggered by galactic interactions. An intriguing implication of starburst research is that active galactic nuclei (AGN) may not be powered by accreting black holes. Instead theories are presented where compact powerhouses of dust-enshrouded star formation lie at the core of AGN, with supernovae exploding roughly once per year within massive nuclear concentrations of gas. This book collects articles from a timely international conference in Elba, Italy, in 1992; these comprise a thorough review of the most important developments in galactic-scale star formation since the starburst revolution of the late 1980s. This text will introduce graduate students to this exciting area and keep experts apace with rapid developments in it.

Characterizing the Interstellar and Circumgalactic Medium in Distant Star-Forming Galaxies

Download Characterizing the Interstellar and Circumgalactic Medium in Distant Star-Forming Galaxies PDF Online Free

Author :
Release : 2018
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Characterizing the Interstellar and Circumgalactic Medium in Distant Star-Forming Galaxies by : Xinnan Du

Download or read book Characterizing the Interstellar and Circumgalactic Medium in Distant Star-Forming Galaxies written by Xinnan Du. This book was released on 2018. Available in PDF, EPUB and Kindle. Book excerpt: Rest-frame ultraviolet (UV) and optical spectroscopy provides valuable information on the physical properties of the neutral and ionized interstellar medium (ISM) in star-forming galaxies. Such observations probe both the systemic interstellar component originating from H II regions, and the multi-phase outflowing component that is associated with star-formation feedback and can ultimately contribute to the circumgalactic and even intergalactic medium (CGM and IGM, respectively). In this dissertation, I investigate the physical properties of ionized gas in star-forming regions, and the kinematics and evolution of the multi-phase outflowing ISM/CGM in distant star-forming galaxies spanning the redshift range z ~ 1-4. This work consists of three studies that examine different aspects of the ISM and CGM, which collectively improve our understanding of the gas content in galaxies and the processes associated with the formation of massive stars near the peak of the star-formation-rate (SFR) density in the universe. I present a comparison of kinematics between the low- and high-ionization absorption features at z ~ 1, and demonstrate that the apparent larger blueshift of interstellar C IV relative to the low-ionization features is likely a result from the nature of resonant transitions instead of an evidence of the faster motion of the highly ionized gas. I further investigate the origin of the highly ionized gas by examining the correlations between the spectral properties of C IV and various galaxy properties. Both the blueshift and equivalent width (EW) of C IV are modulated by SFR and specific SFR, suggesting a direct connection between the highly ionized gas and the formation of massive stars. Nebular emission features provide valuable insights into the physical conditions of the ionized gas in H II regions, as well as the properties of young, massive stars. I show that the nebular C III] emission at z ~ 1 is much weaker compared to the detections from galaxies observed during the epoch of reionization (z > 6), and explore the factors that modulate the strength of this nebular feature. In combination with the results from photoionization models, I further infer the gas-phase metallicity and abundance pattern in the z ~ 1 star-forming galaxies based on the observed rest-frame C III] EW. Studying the lower-redshift analogs of the z > 6 C III] emitters is an alternative way to obtain more detailed information on the physical properties of these extreme-emission-line-galaxies (EELGs). By assembling a sample of EELGs at z ~ 1-2 and examining C III] and other nebular emission features, I aim to characterize the physical conditions of the z > 6 galaxies that are likely responsible for the cosmic reionization. Finally, with carefully constructed samples and uniform measurements, I investigate the evolution of the ISM/CGM at z ~ 2-4 as probed by rest-UV spectroscopy. I discover redshift-independent correlations among Lya emission, low-ionization interstellar absorption lines, and dust extinction. I further show that the covering fraction of neutral gas decreases with increasing redshift at multiple fixed galaxy properties. Gaining a full understanding of galaxy evolution requires further studies of the ISM/CGM in a systemic manner at higher redshifts. With exceptional capabilities in the near-IR and excellent spectroscopic sensitivity, the next generation of large telescopes will enable rest-UV and rest-optical spectroscopic studies of star-forming galaxies out to z > 10. Answering key questions regarding the interplay among massive stars, their contribution to the ionizing background, and feedback will deliver a clear picture of the formation and evolution of these distant star-forming galaxies.

Star-Formation Rates of Galaxies

Download Star-Formation Rates of Galaxies PDF Online Free

Author :
Release : 2021-04-29
Genre : Science
Kind : eBook
Book Rating : 523/5 ( reviews)

GET EBOOK


Book Synopsis Star-Formation Rates of Galaxies by : Andreas Zezas

Download or read book Star-Formation Rates of Galaxies written by Andreas Zezas. This book was released on 2021-04-29. Available in PDF, EPUB and Kindle. Book excerpt: Star-formation is one of the key processes that shape the current state and evolution of galaxies. This volume provides a comprehensive presentation of the different methods used to measure the intensity of recent or on-going star-forming activity in galaxies, discussing their advantages and complications in detail. It includes a thorough overview of the theoretical underpinnings of star-formation rate indicators, including topics such as stellar evolution and stellar spectra, the stellar initial mass function, and the physical conditions in the interstellar medium. The authors bring together in one place detailed and comparative discussions of traditional and new star-formation rate indicators, star-formation rate measurements in different spatial scales, and comparisons of star-formation rate indicators probing different stellar populations, along with the corresponding theoretical background. This is a useful reference for students and researchers working in the field of extragalactic astrophysics and studying star-formation in local and higher-redshift galaxies.

You may also like...