Share

High-oxidation-state Molybdenum and Tungsten Monoalkoxide Pyrrolide Alkylidenes as Catalysts for Olefin Metathesis

Download High-oxidation-state Molybdenum and Tungsten Monoalkoxide Pyrrolide Alkylidenes as Catalysts for Olefin Metathesis PDF Online Free

Author :
Release : 2014
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis High-oxidation-state Molybdenum and Tungsten Monoalkoxide Pyrrolide Alkylidenes as Catalysts for Olefin Metathesis by : Erik Matthew Townsend

Download or read book High-oxidation-state Molybdenum and Tungsten Monoalkoxide Pyrrolide Alkylidenes as Catalysts for Olefin Metathesis written by Erik Matthew Townsend. This book was released on 2014. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 1 describes work toward solid-supported W olefin metathesis catalysts. Attempts to tether derivatives of the known Z-selective catalyst W(NAr)(C3H6)(pyr)(OHIPT) (Ar = 2,6- diisopropylphenyl, pyr = pyrrolide; HIPT = 2,6-bis-(2,4,6-triisopropylphenyl)phenyl) to a modified silica surface by covalent linkages are unsuccessful due to destructive interactions between W precursors and silica. W(NAr)(C3H6)(pyr)(OHIPT) and W(NAr)(CHCMe2Ph)(pyr)(OHIPT-NMe2) (HIPT-NMe 2 = 2,6-bis-(2,4,6-triisopropylphenyl)-4- dimethylaminophenyl) are adsorbed onto calcined alumina. W(NAr)(C 3H6 )(pyr)(OHIPT) is destroyed upon binding to alumina, while W(NAr)(CHCMe 2Ph)(pyr)(OHIPT-NMe 2) appears to bind through a non-destructive interaction between the dimethylamino group and an acidic surface site. The heterogeneous catalysts perform non-stereoselective metathesis of terminal olefins, and W(NAr)(CHCMe2Ph)(pyr)(OHIPT-NMe2) can be washed off the surface with polar solvent and perform solution-phase Z-selective metathesis. Chapter 2 details selective metathesis homocoupling of 1,3-dienes with Mo and W monoalkoxide pyrrolide (MAP) catalysts. A catalytically relevant vinylalkylidene complex, Mo(NAr)(CHCHCH(CH3)2)(Me2pyr)(OHMT) (HMT = 2,6-bis(2,4,6-trimethylphenyl)phenyl; Me2pyr = 2,5-dimethylpyrrolide), is isolated. A series of Mo and W MAP catalysts is synthesized and tested for activity, stereoselectivity, and chemoselectivity in 1,3-diene metathesis homocoupling. Catalysts containing the OHIPT ligand display excellent selectivity in general, and W catalysts are less active but more selective than their Mo counterparts. Chapter 3 recounts the synthesis and characterization of several heteroatom-substituted alkylidene complexes with the formula Mo(NAr)(CHER)(Me2pyr)(OTPP) (TPP = 2,3,5,6- tetraphenylphenyl; ER = OPr, N-pyrrolidinonyl, N-carbazolyl, pinacolborato, trimethylsilyl, SPh, or PPh2). Synthesis proceeds via alkylidene exchange between Mo(NAr)(CHR)(Me2pyr)(OTPP) (R = H, CMe2Ph) and a CH2CHER precursor. Each complex behaves similarly to known MAP complexes in olefin metathesis processes; the electronic identity of ER has little effect on catalytic properties. Distinctive features of alkylidene isomerism and catalyst resting state are examined. Chapter 4 contains synthetic and catalytic studies of thiolate-containing Mo and W imido alkylidene complexes. The species M(NAr)(CHCMe 2Ph)(pyr)(SHMT) (M = Mo or W), Mo(NAr)(CHCMe2Ph)(Me2pyr)(STPP), and Mo(NAr)(CHCMe2Ph)(STPP)2 are synthesized by substitution of the appropriate thiol or thiolate ligands for pyrrolide or triflate ligands in metal precursors. These complexes show similar structural and spectral characteristics to alkoxidecontaining species. The thiolate complexes and their alkoxide analogues are compared for activity and selectivity in metathesis homocoupling and ring-opening metathesis polymerization processes. In general, thiolate catalysts are slower and less selective than alkoxide catalysts.

Synthesis and Reactivity of High Oxidation State Tungsten and Molybdenum Olefin Metathesis Catalysts Bearing New Imido Ligands

Download Synthesis and Reactivity of High Oxidation State Tungsten and Molybdenum Olefin Metathesis Catalysts Bearing New Imido Ligands PDF Online Free

Author :
Release : 2015
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Synthesis and Reactivity of High Oxidation State Tungsten and Molybdenum Olefin Metathesis Catalysts Bearing New Imido Ligands by : Jonathan Clayton Axtell

Download or read book Synthesis and Reactivity of High Oxidation State Tungsten and Molybdenum Olefin Metathesis Catalysts Bearing New Imido Ligands written by Jonathan Clayton Axtell. This book was released on 2015. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 1 details the synthesis of tungsten imidoalkylidene compounds bearing strongly electron-withdrawing imido ligands. An alternative synthesis involving the treatment of WCl6 with 4 equivalents of N-trimethylsilyl-substituted anilines and subsequent workup with 1,2-dimethoxyethane (DME) has been employed to form complexes of the type W(NAr)2C12(dme); syntheses employing WO2C 2(dme) as the tungsten precursor were unsuccessful. Alkylation with neopentylmagnesium chloride (ClMgNp) and subsequent treatment with trifluoromethanesulfonic acid (HOTf) affords imidoalkylidene species W(NAr)(CHCMe 3)(OTf)2(dme) (OTf = trifluoromethanesulfonate); analogous neophylidene ([W]CHCMe 2Ph) species could not be made under these conditions. Treatment of these compounds with two equivalents of LiO(2,6-(CHCPh 2)C6H3)-Et2O affords the bisaryloxide complexes of the type W(NAr)(CHCMe3)(OR)2. Ring-Opening Metathesis Polymerization (ROMP) studies using a series of these bisaryloxides show that rates of ROMP increase as the electron-withdrawing power of the substituents on the imido ligand increase if steric bulk about the metal center is held constant. A similar trend between two bisaryloxides is observed for anti-to-syn alkylidene rotation rates at 50*C in toluene-d8 . Difficulties synthesizing bis-pyrrolide complexes of the type W(NAr)(CHCMe3)(pyr)2 precluded their use as catalyst precursors; some MAP species containing the more sterically encumbering 2,5-dimethylpyrrolide ligand are presented and the metathesis activity of MAP species bearing the 2,5-dimethylpyrrolide ligand is discussed. Chapter 2 introduces Mo and W complexes bearing the current extreme in sterically bulky imido ligands, the NHIPT (HIPT = 2,6-(2,4,6-iPr 3CH2)CH3) ligand, in an effort to generate all anti alkylidene species. A non-traditional synthetic route is employed in order to install this ligand first as an anilide, and after subsequent proton transfer, as an imido ligand to form a mixed imido species of the type M(NHIPT)(N'Bu)(NH'Bu)Cl. Addition of one equivalent of 2,6-lutidinium chloride, followed by alkylation affords dialkyl species M(NHIPT)(N'Bu)Np 2, and treatment with three equivalents of pyridinium chloride yields all anti imidoalkylidene dichloride species as mono-pyridine adducts, M(NHIPT)(CHCMe 3)C 2(py) (M = Mo, W). General reactivity, including strategies for removal of the pyridine adduct as well as substitution and metathesis chemistry, are discussed. ROMP of MPCP (MPCP = 3-methyl-3-phenylcyclopropene) by a Mo-based MAP species bearing the NHIPT ligand yields predominantly cis,syndiotactic poly(MPCP) and in the homo-metathesis of 1 -octene yields ~81% cis-7-tetradecene. The possible source of trans olefinic product is addressed. Chapter 3 presents the synthesis of the first (1-adamantyl)imido species of tungsten. The functional equivalent of common bisimido precursors for other Mo/W alkylidene species, [W(NAd) 2C 2(AdNH2)1 2, is shown to be a dimer stabilized by hydrogen-bonding interactions between adamantylamine protons and adjacent chlorides bound to the second metal of the dimer. Subsequent alkylation with ClMgNp affords the expected dialkyl species, and treatment with three equivalents of 3,5-lutidinium chloride affords imidoalkylidene complex W(NAd)(CHCMe 3)(C) 2(lut)2 (lut = 3,5-dimethylpyridine). The most desirable synthetic route toward monoalkoxide pyrrolide (MAP) species proceeds through a monoaryloxide monochloride intermediate W(NAd)(CHCMe 3)(Cl)(OAr)(lut) (Ar = 2,6-(2,4,6-Me 3)C6H3, 2,6-(2,4,6-'Pr 3)C6H3). Removal of lutidine with B(C6 F5 )3 and subsequent treatment with lithium pyrrolide affords W(NAd)(CHCMe3)(pyr)(OAr) (pyr = pyrrolide); 2,5-dimethylpyrrolide analogues (W(NAd)(CHCMe3)(Me2pyr)(OAr) can be accessed via protonolysis by HOAr from W(NAd)(CHCMe3)(Me2pyr)2(lut).

High Oxidation State Molybdenum and Tungsten Imido Alkylidene and Metallacycle Chemistry

Download High Oxidation State Molybdenum and Tungsten Imido Alkylidene and Metallacycle Chemistry PDF Online Free

Author :
Release : 2004
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis High Oxidation State Molybdenum and Tungsten Imido Alkylidene and Metallacycle Chemistry by : W. C. Peter Tsang

Download or read book High Oxidation State Molybdenum and Tungsten Imido Alkylidene and Metallacycle Chemistry written by W. C. Peter Tsang. This book was released on 2004. Available in PDF, EPUB and Kindle. Book excerpt: (Cont.) unsubstituted tungstacyclobutane complexes (82), ethylene complexes (84), tungstacyclopentane complexes (86), and a heterochiral methylene dimer (85a). The tungstacyclopentane complexes catalyzed slow dimerization of ethylene to 1-butene. The observation of the methylene dimer provides the first direct evidence of a bimolecular decomposition pathway for methylene complexes. Chapter 3 Racemic and enantiomerically pure molybdenum alkylimido alkylidene complexes, Mo(NAd)(CHCMe2Ph)(Biphen) (19d, Ad = 1-adamantyl) and Mo(NAd)(CHCMe2Ph)[Trip]-(THF) (20d) were prepared and structurally characterized. Complex 19d was observed almost exclusively as a syn alkylidene isomer, in contrast with 20d which was observed almost exclusively as an anti-THF adduct. Complexes 19d and 20d are the only reported chiral alkylimido alkylidene complexes for enantioselective olefin metathesis reactions. Complex 19d is the first crystallographically characterized four-coordinate adamantylimido alkylidene complex in its base-free form. It offers unique reactivity and selectivity profiles in tandem AROM/RCM and AROM/CM reactions. Complex 19d is compatible with a variety of common functional groups, including boron-containing reagents. Van't Hoff analyses suggest that the bias toward syn-19d isomer is entropy-driven. Chapter 4: Solvent- and base-free molybdenum methylene complexes, Mo(NAr)(Biphen)(CH2) (114a, Ar = 2,6-i-Pr2C6H3) and Mo(NAd)(Biphen)(CH2) (114d, Ad = 1-adamantyl) ...

Investigations of Sterically Demanding Ligands in Molybdenum and Tungsten Monopyrrolide Monoalkoxide Catalysts for Olefin Metathesis

Download Investigations of Sterically Demanding Ligands in Molybdenum and Tungsten Monopyrrolide Monoalkoxide Catalysts for Olefin Metathesis PDF Online Free

Author :
Release : 2013
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Investigations of Sterically Demanding Ligands in Molybdenum and Tungsten Monopyrrolide Monoalkoxide Catalysts for Olefin Metathesis by : Laura Claire Heidkamp Gerber

Download or read book Investigations of Sterically Demanding Ligands in Molybdenum and Tungsten Monopyrrolide Monoalkoxide Catalysts for Olefin Metathesis written by Laura Claire Heidkamp Gerber. This book was released on 2013. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 2 investigates the mechanism of the temperature-controlled polymerization of 3- methyl-3-phenylcyclopropene (MPCP) by Mo(NAr)(CHCMe 2Ph)(Pyr)(OTPP) (Ar = 2,6- diisopropylphenyl, Pyr = pyrrolide, OTPP = 2,3,5,6-tetraphenylphenoxide). Cissyndiotactic poly(MPCP) is obtained at -78 °C, while atactic poly(MPCP) is obtained at ambient temperature. The syn initiator (syn refers to the isomer in which the substituent on the alkylidene points towards the imido ligand and anti where the substituent points away) reacts with MPCP to form an anti first-insertion product at low temperatures, which continues to propagate to give cis,syndiotactic polymer. At higher temperatures, the anti alkylidenes that form initially upon reaction with MPCP rotate thermally to syn alkylidenes on a similar timescale as polymer propagation, giving rise to an irregular polymer structure. In this system cis,syndiotactic polymer is obtained through propagation of anti alkylidene species. Chapters 3 - 5 detail the synthesis and reactivity of compounds containing a 2,6- dimesitylphenylimido (NAr*) ligand in order to provide a better understanding of the role of steric hindrance in olefin metathesis catalysts. A new synthetic route to imido alkylidene complexes of Mo and W, which proceeds through mixed-imido compounds containing both NAr* and NtBu ligands, was developed to incorporate the NAr* ligand. Alkylidene formation is accomplished by the addition of 3 equivalents of pyridine*HCl to Mo(NAr*)(NBu)(CH 2CMe2Ph)2 or the addition of 1 equivalent of pyridine followed by 3 equivalents of HCl solution to W(NAr*)(N'Bu)(CH 2CMe2Ph)2 to provide M(NAr*)(CHCMe 2Ph)Cl 2(py) (py = pyridine). Monoalkoxide monochloride, bispyrrolide, and monoalkoxide monopyrrolide (MAP) compounds are isolated upon substitution of the chloride ligands. Reaction of W MAP complexes (W(NAr*)(CHCMe 2Ph)(Me2Pyr)(OR)) with ethylene allows for the isolation of unsubstituted metallacycle complexes W(N Ar*)(C 3H6)(Me 2Pyr)(OR) (R = CMe(CF 3)2, 2,6-Me2C6H3, and SiPh 3). By application of vacuum to solutions of unsubstituted metallacyclebutane species, methylidene complexes W(NAr*)(CH 2)(Me2Pyr)(OR) (R = tBu, 2,6-Me2C6H3, and SiPh 3) are isolated. Addition of one equivalent of 2,3- dicarbomethoxynorbornadiene to methylidene species allows for the observation of firstinsertion products by NMR spectroscopy. Investigations of NAr* MAP compounds as catalysts for olefin metathesis reactions show that they are active catalysts, but not E or Z selective for ring-opening metathesis polymerization the homocoupling of 1-octene or 1,3-dienes. Methylidene species W(NAr*)(CH 2)(Me2Pyr)(OR) (R = 2,6-Me 2C6H3 or SiPh3) catalyze the ring-opening metathesis or substituted norbornenes and norbornadienes with ethylene.

Handbook of Metathesis, Volume 1

Download Handbook of Metathesis, Volume 1 PDF Online Free

Author :
Release : 2015-02-18
Genre : Science
Kind : eBook
Book Rating : 005/5 ( reviews)

GET EBOOK


Book Synopsis Handbook of Metathesis, Volume 1 by : Robert H. Grubbs

Download or read book Handbook of Metathesis, Volume 1 written by Robert H. Grubbs. This book was released on 2015-02-18. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of the Handbook of Metathesis, edited by Nobel Prize Winner Robert H. Grubbs and his team, is available as a 3 Volume set as well as individual volumes. Volume 1, edited by R. H. Grubbs together with A. G. Wenzel focusses on Catalyst Development and Mechanism. The new edition of this set is completely updated (more than 80% new content) and expanded, with a special focus on industrial applications. Written by the "Who-is-Who" of metathesis, this book gives a comprehensive and high-quality overview. It is the perfect and ultimate one-stop-reference source in this field and indispensable for chemists in academia and industry alike. View the set here - http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527334246.html Other available volumes: Volume 2: Applications in Organic Synthesis, Editors: R. H. Grubbs and D. J. O´Leary - http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527339493.html Volume 3: Polymer Synthesis, Editors: R. H. Grubbs and E. Khosravi - http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527339507.html

You may also like...