Share

Flow Reactor Studies of Non-equilibrium Plasma Assisted Combustion Kinetics

Download Flow Reactor Studies of Non-equilibrium Plasma Assisted Combustion Kinetics PDF Online Free

Author :
Release : 2015
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Flow Reactor Studies of Non-equilibrium Plasma Assisted Combustion Kinetics by : Nicholas Tsolas

Download or read book Flow Reactor Studies of Non-equilibrium Plasma Assisted Combustion Kinetics written by Nicholas Tsolas. This book was released on 2015. Available in PDF, EPUB and Kindle. Book excerpt: A new experimental facility was developed to study the reactive chemical kinetics associated with plasma-assisted combustion (PAC). Experiments were performed in a nearly isothermal plasma flow reactor (PFR), using reactant mixtures highly diluted in an inert gas (e.g., Ar, He, or N2) to minimize temperature changes from chemical reactions. At the end of the isothermal reaction zone, the gas temperature was rapidly lowered to terminate any continuation in reaction. Product composition as a result of any observed reaction was then determined using ex situ techniques, including non-dispersive infrared (NDIR), and by sample extraction and storage into a multi-position valve for subsequent analysis by gas chromatography (GC). Hydroxyl radical concentrations were measured in situ, using the laser induced fluorescence (LIF) technique. Reactivity maps for a given fuel system were achieved by fixing the flow rate or residence time of the reactant mixture through the PFR and varying the isothermal temperature. Fuels studied were hydrogen, ethylene and C1 to C7 alkane hydrocarbons, to examine pyrolysis and oxidation kinetics with and without the effects of a high-voltage nanosecond pulse duration plasma discharge, at atmospheric pressure from 420 K to 1250 K. In select instances, experimental studies were complimented with detailed chemical kinetic modeling analysis to determine the dominant and rate-controlling mechanisms, while elucidating the influence of the plasma chemistry on the thermal (neutral) chemistry.In the hydrogen oxidation system, no thermal reaction was observed until 860 K, consistent with the second explosion limit at atmospheric pressure, at which point all the hydrogen was rapidly consumed within the residence time of the reactor. With the plasma discharge, oxidation occurred at all temperatures examined, exhibiting a steady increase in the rate of oxidation starting from 470 K, and eventually consuming all the initial hydrogen by 840 K. For ethylene, kinetic results with the discharge indicated that pyrolysis type reactions were nearly as important as oxidative reactions in consuming ethylene below 750 K. Above 750 K, the thermal reactions coupled to the plasma reactions to further enhance the high temperature fuel consuming chemistry. Modeling analysis of plasma-assisted pyrolysis revealed that ethylene dissociation by collisional quenching with electronically-excited argon atoms formed in the presence of the plasma, resulted in the direct formation of acetylene and larger hydrocarbons by way of the ethyl radical. Similarly, during plasma-assisted oxidation, excited argon was able to directly dissociate the initial oxidizer to further enhance fuel consumption, but also facilitate low temperature oxidative chemistry due to the effective production of oxygenated species controlled by R+O2 chemistry. At the highest temperatures, the radical production by neutral thermal reactions became competitive and the effectiveness associated with the plasma coupled chemistry decreased. Under the effects of the plasma, alkane fuels exhibited extended limits of oxidation over the entire temperature range considered, compared to that of the thermal reactions alone. At atmospheric pressure, propane and butane exhibited cool flame chemistry between 420 K to 700 K, which normally occurs at higher pressures (P > 1 atm) for thermally constrained systems. This chemistry is characterized by the alkylperoxy radical formation, isomerization to the hydroperoxyalkyl radical, followed by dissociation to form aldehydes and ketones. Whereas, intermediate temperature chemistry between 700 K to 950 K, is characterized by beta-scission of the initial alkyl radical to form alkenes and smaller alkanes. The culmination of these studies demonstrate new insight into the kinetics governing PAC and provides a new experimental database to facilitate the development and validation of PAC-specific kinetic mechanisms.

Non-equilibrium Kinetic Studies of Repetitively Pulsed Nanosecond Discharge Plasma Assisted Combustion

Download Non-equilibrium Kinetic Studies of Repetitively Pulsed Nanosecond Discharge Plasma Assisted Combustion PDF Online Free

Author :
Release : 2008
Genre : Chemical kinetics
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Non-equilibrium Kinetic Studies of Repetitively Pulsed Nanosecond Discharge Plasma Assisted Combustion by : Mruthunjaya Uddi

Download or read book Non-equilibrium Kinetic Studies of Repetitively Pulsed Nanosecond Discharge Plasma Assisted Combustion written by Mruthunjaya Uddi. This book was released on 2008. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: The dissertation presents non-equilibrium chemical kinetic studies of large volume lean gaseous hydrocarbon/ air mixture combustion at temperatures (~300K) much below self ignition temperatures and low pressures (40-80torr), in ~25 nanosecond duration repetitive high voltage (~18kV) electric discharges running at 10 Hz. Xenon calibrated Two Photon Absorption Laser Induced Fluorescence (TALIF) is used to measure absolute atomic oxygen concentrations in air, methane-air, and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single 25 nsec discharge pulse at 10Hz. Oxygen atom densities are also measured after a burst of nanosecond discharges at a variety of delay times, the burst being run at 10Hz. Each burst contains sequences of 2 to 100 nanosecond discharge pulses at 100 kHz. Burst mode measurements show very significant (up to ~0.2%) build-up of atomic oxygen density in air, and some build-up (by a factor of approximately three) in methane-air at [phi]=0.5. Burst measurements in ethylene-air at [phi]=0.5 show essentially no build-up, due to rapid O atom reactions with ethylene in the time interval between the pulses. Nitric oxide density is also measured using single photon Laser Induced Fluorescence (LIF), in a manner similar to oxygen atoms, and compared with kinetic modeling. Fluorescence from a NO (4.18ppm) +N2 calibration gas is used to calibrate the NO densities. Peak density in air is found to be ~ 3.5ppm at ~ 225us, increasing from almost initial levels of ~ 0 ppm directly after the pulse. Kinetic modeling using only the Zeldovich mechanism predicts a slow increase in NO formation, in ~ 2 ms, which points towards the active participation of excited N2 and O2 molecules and N atoms in forming NO molecules. Ignition delay at a variety of fuel/ air conditions is studied using OH emission measurements at ~ 308nm as ignition foot prints. The ignition delay is found to be in the range of 6-20ms for ethylene/ air mixtures. No ignition was observed in the case of methane/ air mixtures. All these measurements agree well with kinetic modeling developed involving plasma reactions and electron energy distribution function calculations.

Kinetic Modeling and Sensitivity Analysis of Plasma-assisted Combustion

Download Kinetic Modeling and Sensitivity Analysis of Plasma-assisted Combustion PDF Online Free

Author :
Release : 2015
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Kinetic Modeling and Sensitivity Analysis of Plasma-assisted Combustion by : Kuninori Togai

Download or read book Kinetic Modeling and Sensitivity Analysis of Plasma-assisted Combustion written by Kuninori Togai. This book was released on 2015. Available in PDF, EPUB and Kindle. Book excerpt: Plasma-assisted combustion (PAC) is a promising combustion enhancement technique that shows great potential for applications to a number of different practical combustion systems. In this dissertation, the chemical kinetics associated with PAC are investigated numerically with a newly developed model that describes the chemical processes induced by plasma. To support the model development, experiments were performed using a plasma flow reactor in which the fuel oxidation proceeds with the aid of plasma discharges below and above the self-ignition thermal limit of the reactive mixtures. The mixtures used were heavily diluted with Ar in order to study the reactions with temperature-controlled environments by suppressing the temperature changes due to chemical reactions. The temperature of the reactor was varied from 420 K to 1250 K and the pressure was fixed at 1 atm. Simulations were performed for the conditions corresponding to the experiments and the results are compared against each other. Important reaction paths were identified through path flux and sensitivity analyses. Reaction systems studied in this work are oxidation of hydrogen, ethylene, and methane, as well as the kinetics of NOx in plasma.In the fuel oxidation studies, reaction schemes that control the fuel oxidation are analyzed and discussed. With all the fuels studied, the oxidation reactions were extended to lower temperatures with plasma discharges compared to the cases without plasma. The analyses showed that radicals produced by dissociation of the reactants in plasma plays an important role of initiating the reaction sequence. At low temperatures where the system exhibits a chain-terminating nature, reactions of HO2 were found to play important roles on overall fuel oxidation. The effectiveness of HO2 as a chain terminator was weakened in the ethylene oxidation system, because the reactions of C2H4 + O that have low activation energies deflects the flux of O atoms away from HO2. For the ethylene and methane oxidation systems, the reaction pathways important for the formation of intermediate species are discussed. The reactions of CH3 and C2H5 were found to influence the production channels of minor species.In the studies on the kinetics of NOx in plasma, several mechanistic insights were obtained, including the identification of formation and consumption steps of N2O and the extensive review of three NO formation schemes found in the current reaction mechanism. Efforts to address the known inaccuracies of the current model are also reported.

Plasma Kinetics in Atmospheric Gases

Download Plasma Kinetics in Atmospheric Gases PDF Online Free

Author :
Release : 2013-03-09
Genre : Science
Kind : eBook
Book Rating : 588/5 ( reviews)

GET EBOOK


Book Synopsis Plasma Kinetics in Atmospheric Gases by : M. Capitelli

Download or read book Plasma Kinetics in Atmospheric Gases written by M. Capitelli. This book was released on 2013-03-09. Available in PDF, EPUB and Kindle. Book excerpt: Emphasis is placed on the analysis of translational, rotational, vibrational and electronically excited state kinetics, coupled to the electron Boltzmann equation.

Methane Conversion

Download Methane Conversion PDF Online Free

Author :
Release : 1988-03-01
Genre : Technology & Engineering
Kind : eBook
Book Rating : 707/5 ( reviews)

GET EBOOK


Book Synopsis Methane Conversion by : D.M. Bibby

Download or read book Methane Conversion written by D.M. Bibby. This book was released on 1988-03-01. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume comprises the invited plenary lectures, contributed and poster papers presented at a symposium organised to mark the successful inauguration of the world's first commercial plant for production of gasoline from natural gas, based on the Mobil methanol-to-gasoline process. The objectives of the Symposium were to present both fundamental research and engineering aspects of the development and commercialization of gas-to-gasoline processes. These include steam reforming, methanol synthesis and methanol-to-gasoline. Possible alternative processes e.g. MOGD, Fischer-Tropsch synthesis of hydrocarbons, and the direct conversion of methane to higher hydrocarbons were also considered.The papers in this volume provide a valuable and extremely wide-ranging overview of current research into the various options for natural gas conversion, giving a detailed description of the gas-to-gasoline process and plant. Together, they represent a unique combination of fundamental surface chemistry catalyst characterization, reaction chemistry and engineering scale-up and commercialization.

You may also like...