Share

Finite Element Time Domain Techniques for Maxwell's Equations Based on Differential Forms

Download Finite Element Time Domain Techniques for Maxwell's Equations Based on Differential Forms PDF Online Free

Author :
Release : 2010
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Finite Element Time Domain Techniques for Maxwell's Equations Based on Differential Forms by : Joonshik Kim

Download or read book Finite Element Time Domain Techniques for Maxwell's Equations Based on Differential Forms written by Joonshik Kim. This book was released on 2010. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: This dissertation is concerned with the development of numerical techniques for solving Maxwell equations in the time-domain. Two of the main challenges to obtain such solution are, first, how to construct explicit (that is, matrix-free) time-updating formulas without relinquishing the advantage of using irregular unstructured meshes in complex geometries, and second, how to best parallelize the algorithm to solve large-scale problems. The finite element time-domain (FETD) and the finite-difference time-Domain (FDTD) are presently the two most popular methods for solving Maxwell equations in the time-domain. FDTD employs a staggered-grid spatial discretization together with leap-frog style time update scheme to produce a method with many desirable properties such as: conservation of charge and energy, absence of spurious mode, and a simple easy-to-code algorithm. Nevertheless, FDTD (in its conventional form) relies on orthogonal grids, which is a disadvantage when modeling complex geometries. On the other hand, FETD is based upon unstructured grids and hence naturally tailored to handle complex geometries. However, in time-domain simulation (as opposed to frequency-domain simulations), FETD requires a matrix solver at every time step. Since the total number of time steps to produce the overall time-domain solution can be quite large, this requirement demands excessive computational resources. To overcome this problem, we develop a FETD algorithm with "FDTD-like" explicit characteristics. Usually, the system matrices generated after discretizing Maxwell equations in irregular grids are very large and sparse matrices, while their inverses are very large and dense matrices. To construct an explicit algorithm, ideally one would need to somehow obtain and use such inverses. However, these dense matrices are of course not useful in a update scheme because they are not only very costly to compute but also very costly to store for most practical problems. For this reason, we investigate the use of approximate sparse inverses to build update schemes for FETD. We show that the most direct choice, which is to use the approximate inverse of the system matrix itself, is not really an adequate choice because of the nature of the corresponding (continuum) operator, with long-range interactions. We therefore consider instead the use of the approximate inverse of the Hodge (or mass) matrix, which a symmetric positive definite matrix representing a strictly local operator in the continuum limit whose inverse is also local, to compute explicit update schemes. This entails the discretization of Maxwell's equations based on discrete differential forms and the use of a "mixed" set of basis functions for the FETD: Whitney one forms for the electric field intensity and Whitney two forms for the magnetic flux density. This choice of basis functions obeys a discrete version of the de Rham diagram and leads to solutions that are free of spurious modes and numerically stable. We construct a parallel approach to compute the approximate inverse, and provide an error analysis of the resulting solutions versus the density of the approximate inverse and the mesh refinement considered. A higher-order version of the mixed FETD algorithm is also constructed, showing good convergence versus the polynomial order.

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Download Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials PDF Online Free

Author :
Release : 2012-12-15
Genre : Computers
Kind : eBook
Book Rating : 899/5 ( reviews)

GET EBOOK


Book Synopsis Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials by : Jichun Li

Download or read book Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials written by Jichun Li. This book was released on 2012-12-15. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to provide an up-to-date introduction to the time-domain finite element methods for Maxwell’s equations involving metamaterials. Since the first successful construction of a metamaterial with both negative permittivity and permeability in 2000, the study of metamaterials has attracted significant attention from researchers across many disciplines. Thanks to enormous efforts on the part of engineers and physicists, metamaterials present great potential applications in antenna and radar design, sub-wavelength imaging, and invisibility cloak design. Hence the efficient simulation of electromagnetic phenomena in metamaterials has become a very important issue and is the subject of this book, in which various metamaterial modeling equations are introduced and justified mathematically. The development and practical implementation of edge finite element methods for metamaterial Maxwell’s equations are the main focus of the book. The book finishes with some interesting simulations such as backward wave propagation and time-domain cloaking with metamaterials.

Finite Element Methods for Maxwell's Equations

Download Finite Element Methods for Maxwell's Equations PDF Online Free

Author :
Release : 2003-04-17
Genre : Mathematics
Kind : eBook
Book Rating : 885/5 ( reviews)

GET EBOOK


Book Synopsis Finite Element Methods for Maxwell's Equations by : Peter Monk

Download or read book Finite Element Methods for Maxwell's Equations written by Peter Monk. This book was released on 2003-04-17. Available in PDF, EPUB and Kindle. Book excerpt: Finite Element Methods For Maxwell's Equations is the first book to present the use of finite elements to analyse Maxwell's equations. This book is part of the Numerical Analysis and Scientific Computation Series.

A Novel High Order Time Domain Vector Finite Element Method for the Simulation of Electromagnetic Devices

Download A Novel High Order Time Domain Vector Finite Element Method for the Simulation of Electromagnetic Devices PDF Online Free

Author :
Release : 2004
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis A Novel High Order Time Domain Vector Finite Element Method for the Simulation of Electromagnetic Devices by : Robert N. Rieben

Download or read book A Novel High Order Time Domain Vector Finite Element Method for the Simulation of Electromagnetic Devices written by Robert N. Rieben. This book was released on 2004. Available in PDF, EPUB and Kindle. Book excerpt:

Partial Differential Equations and the Finite Element Method

Download Partial Differential Equations and the Finite Element Method PDF Online Free

Author :
Release : 2005-12-16
Genre : Mathematics
Kind : eBook
Book Rating : 094/5 ( reviews)

GET EBOOK


Book Synopsis Partial Differential Equations and the Finite Element Method by : Pavel Ŝolín

Download or read book Partial Differential Equations and the Finite Element Method written by Pavel Ŝolín. This book was released on 2005-12-16. Available in PDF, EPUB and Kindle. Book excerpt: A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.

You may also like...