Share

Field-scale Simulation of Adsorptive Transport Behaviors of Nanoparticles in Porous Media

Download Field-scale Simulation of Adsorptive Transport Behaviors of Nanoparticles in Porous Media PDF Online Free

Author :
Release : 2019
Genre : Adsorption
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Field-scale Simulation of Adsorptive Transport Behaviors of Nanoparticles in Porous Media by : Erxiu Shi

Download or read book Field-scale Simulation of Adsorptive Transport Behaviors of Nanoparticles in Porous Media written by Erxiu Shi. This book was released on 2019. Available in PDF, EPUB and Kindle. Book excerpt:

Numerical Modeling of Nanoparticle Transport in Porous Media

Download Numerical Modeling of Nanoparticle Transport in Porous Media PDF Online Free

Author :
Release : 2023-06-17
Genre : Technology & Engineering
Kind : eBook
Book Rating : 129/5 ( reviews)

GET EBOOK


Book Synopsis Numerical Modeling of Nanoparticle Transport in Porous Media by : Mohamed F. El-Amin

Download or read book Numerical Modeling of Nanoparticle Transport in Porous Media written by Mohamed F. El-Amin. This book was released on 2023-06-17. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Modeling of Nanoparticle Transport in Porous Media: MATLAB/PYTHON Approach focuses on modeling and numerical aspects of nanoparticle transport within single- and two-phase flow in porous media. The book discusses modeling development, dimensional analysis, numerical solutions and convergence analysis. Actual types of porous media have been considered, including heterogeneous, fractured, and anisotropic. Moreover, different interactions with nanoparticles are studied, such as magnetic nanoparticles, ferrofluids and polymers. Finally, several machine learning techniques are implemented to predict nanoparticle transport in porous media. This book provides a complete full reference in mathematical modeling and numerical aspects of nanoparticle transport in porous media. It is an important reference source for engineers, mathematicians, and materials scientists who are looking to increase their understanding of modeling, simulation, and analysis at the nanoscale. Explains the major simulation models and numerical techniques used for predicting nanoscale transport phenomena Provides MATLAB codes for most of the numerical simulation and Python codes for machine learning calculations Uses examples and results to illustrate each model type to the reader Assesses major application areas for each model type

Adsorption and Diffusion in Nanoporous Materials

Download Adsorption and Diffusion in Nanoporous Materials PDF Online Free

Author :
Release : 2007-03-05
Genre : Science
Kind : eBook
Book Rating : 764/5 ( reviews)

GET EBOOK


Book Synopsis Adsorption and Diffusion in Nanoporous Materials by : Rolando M.A. Roque-Malherbe

Download or read book Adsorption and Diffusion in Nanoporous Materials written by Rolando M.A. Roque-Malherbe. This book was released on 2007-03-05. Available in PDF, EPUB and Kindle. Book excerpt: As nanomaterials get smaller, their properties increasingly diverge from their bulk material counterparts. Written from a materials science perspective, Adsorption and Diffusion in Nanoporous Materials describes the methodology for using single-component gas adsorption and diffusion measurements to characterize nanoporous solids. Concise, yet comprehensive, the book covers both equilibrium adsorption and adsorption kinetics in dynamic systems in a single source. It presents the theoretical and mathematical tools for analyzing microporosity, kinetics, thermodynamics, and transport processes of the adsorbent surface. Then it examines how these measurements elucidate structural and morphological characteristics of the materials. Detailed descriptions of the phenomena include diagrams, essential equations, and fully derived, concrete examples based on the author's own research experiences and insight. The book contains chapters on statistical physics, dynamic adsorption in plug flow bed reactors, and the synthesis and modification of important nanoporous materials. The final chapter covers the principles and applications of adsorption for multicomponent systems in the liquid phase. Connecting recent advances in adsorption characterization with developments in the transport and diffusion of nanoporous materials, this book is ideal for scientists involved in the research, development, and applications of new nanoporous materials.

Characterizing and Upscaling Transport, Mixing and Reactions in Porous Media

Download Characterizing and Upscaling Transport, Mixing and Reactions in Porous Media PDF Online Free

Author :
Release : 2013
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Characterizing and Upscaling Transport, Mixing and Reactions in Porous Media by : David Lee Hochstetler

Download or read book Characterizing and Upscaling Transport, Mixing and Reactions in Porous Media written by David Lee Hochstetler. This book was released on 2013. Available in PDF, EPUB and Kindle. Book excerpt: Reactive transport in porous media is critical to many subsurface environmental issues including the fate and transport of contaminants, nuclear waste disposal, and carbon dioxide sequestration. Often, dilution and mixing are the controlling factors in each of these processes, such as the overlapping of plumes containing different reactants that is necessary for (bio)degradation of a groundwater contaminant. Thus, improved quantification of mixing, including upscaling relationships, parameterizations, and metrics for dilution and reactive mixing, are necessary for enhanced understanding, predictive modeling, and management of resources. There is a crucial need to improve the upscaling of parameters from the pore-scale to the Darcy and field scale, as well as improve our understanding of the phenomena that manifest at the macroscale as a result of the interaction of coupled physical and (bio)chemical processes at the pore scale. In this dissertation, pore-scale numerical models are used in combination with continuum models and lab (bench) scale experiments in order to study the coupled processes of flow, mixing, and reactions in three different studies. Also, a theoretical derivation is provided for the transport of the entropy of a reactive species, and several applications are used to illustrate its potential as a metric for reactive mixing and dilution. In the first study, pore-scale models are used to explore the unresolved question of the impact of using effective versus intrinsic reaction rate constants for predicting reactive transport in porous media. For a case of displacement and mixing of two solutions with irreversible bimolecular reactions, breakthrough curves from multiple locations are analyzed for conservative and reactive transport, as well as the segregation of reactant species along the cross-sections. For a range of Damköhler numbers (Da), effective reaction rate parameters are found and an empirical formula is developed to describe the relationship between the reaction effectiveness factor and $Da$. This helps describe the upscaled system behavior. The pore-scale results confirm the segregation concept advanced by Kapoor et al. (1997); however, for Da> 1, the effective rate constant is much less than the intrinsic rate constant, yet the relative difference in total mass transformation between the pore-scale simulation and what is predicted by the upscaled continuum model using the intrinsic rate constant is rather modest, of the order of about 10%. The explanation for this paradox is the early transition from a rate-limited to a mixing-limited regime, which results in a model that is relatively insensitive to the rate constant because mixing controls the availability of reactants. Thus, the reaction-rate parameter used in the model has limited influence on the rate of product computed. The second and third studies focus on transverse mixing, which often is critical for reactions to occur in porous media. In the second study, multitracer laboratory bench-scale experiments and pore-scale simulations are used to (i) determine a generalized parameterization of transverse hydrodynamic dispersion at the continuum Darcy scale, (ii) improve understanding of basic transport processes at the subcontinuum scale and how they manifest macroscopically, and (iii) quantify the importance of aqueous diffusion for transport of different solutes. In order to capture the observed results from the pore-scale and lab-scale, a nonlinear compound specific parameterization of transverse dispersion is necessary. The pore-scale simulations illustrate that the interplay between advective and diffusive mass transfer results in transverse concentration gradients leading to incomplete mixing in the pore channels. Ultimately, this affects local transverse mixing at the Darcy scale even at high flow velocities. In the third study, different pseudorandom pore-scale porous media are used for both conservative and reactive simulations, and the impact of the choice of transverse dispersion parameterization on predicting mixing-limited reactive transport with a continuum formulation is explored. Again, both pore-scale numerical simulations and flow-through laboratory experiments are used. The nonlinear parameterization of transverse dispersion consistently predicts both product mass flux and reactant plume extents across two orders of magnitude of mean flow velocities. In contrast, the classical linear parameterization of transverse dispersion, assuming a constant dispersivity as a property of the porous medium, could not consistently predict either indicator with great accuracy. Furthermore, the linear parameterization of transverse dispersion predicts an asymptotic (constant) plume length with increasing velocity while the nonlinear parameterization indicates that the plume length increases with the square root of the velocity. Both the pore-scale model simulations and the laboratory experiments of mixing-limited reactive transport show the latter relationship. A final issue this thesis addresses is the need for appropriate metrics that accurately quantify the interplay between mixing and reactive processes. The exponential of the Shannon entropy of the concentration probability distribution has been proposed and applied to quantify the dilution of conservative solutes either in a given volume or in a given water flux via the dilution index and the flux-related dilution index, respectively. In the final study, the transport equation for the entropy of a reactive solute is derived. Using a flux-related framework, it is shown that the degree of uniformity of the solute mass flux distribution for a reactive species and its rate of change are informative measures of physical and (bio)chemical processes and their complex interaction.

Adsorption and Transport at the Nanoscale

Download Adsorption and Transport at the Nanoscale PDF Online Free

Author :
Release : 2005-12-15
Genre : Science
Kind : eBook
Book Rating : 015/5 ( reviews)

GET EBOOK


Book Synopsis Adsorption and Transport at the Nanoscale by : Nick Quirke

Download or read book Adsorption and Transport at the Nanoscale written by Nick Quirke. This book was released on 2005-12-15. Available in PDF, EPUB and Kindle. Book excerpt: Nanoporous materials are used widely in industry as adsorbents, particularly for applications where selective adsorption of one fluid component from a mixture is important. Nanoscale structures are of increasing interest for micro- and nanofluidic devices. Computational methods have an important role to play in characterizing, understanding, and designing such materials. Adsorption and Transport at the Nanoscale gives a survey of computational methods and their applications in this burgeoning field. Beginning with an overview of adsorption and transport phenomena at the nanoscale, this book details several important simulation techniques for characterization and modeling of nanomaterials and surfaces. Expert contributors from Europe, Asia, and the US discuss topics including Monte Carlo simulation for modeling gas adsorption; experimental and simulation studies of aniline in activated carbon fibers; molecular simulation of templated mesoporous materials and adsorption of guest molecules in zeolitic materials; as well as computer simulation of isothermal mass transport in graphitic slit pores. These studies elucidate the chemical and physical phenomena while demonstrating how to perform the simulation techniques, illustrating their advantages, drawbacks, and limitations. A survey of recent progress in numerical simulation of nanomaterials, Adsorption and Transport at the Nanoscale explains the central role of molecular simulation in characterizing and designing novel materials and devices.

You may also like...