Share

Efficient Computation with Sparse and Dense Polynomials

Download Efficient Computation with Sparse and Dense Polynomials PDF Online Free

Author :
Release : 2011
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Efficient Computation with Sparse and Dense Polynomials by : Daniel Steven Roche

Download or read book Efficient Computation with Sparse and Dense Polynomials written by Daniel Steven Roche. This book was released on 2011. Available in PDF, EPUB and Kindle. Book excerpt: Computations with polynomials are at the heart of any computer algebra system and also have many applications in engineering, coding theory, and cryptography. Generally speaking, the low-level polynomial computations of interest can be classified as arithmetic operations, algebraic computations, and inverse symbolic problems. New algorithms are presented in all these areas which improve on the state of the art in both theoretical and practical performance. Traditionally, polynomials may be represented in a computer in one of two ways: as a "dense" array of all possible coefficients up to the polynomial's degree, or as a "sparse" list of coefficient-exponent tuples. In the latter case, zero terms are not explicitly written, giving a potentially more compact representation. In the area of arithmetic operations, new algorithms are presented for the multiplication of dense polynomials. These have the same asymptotic time cost of the fastest existing approaches, but reduce the intermediate storage required from linear in the size of the input to a constant amount. Two different algorithms for so-called "adaptive" multiplication are also presented which effectively provide a gradient between existing sparse and dense algorithms, giving a large improvement in many cases while never performing significantly worse than the best existing approaches. Algebraic computations on sparse polynomials are considered as well. The first known polynomial-time algorithm to detect when a sparse polynomial is a perfect power is presented, along with two different approaches to computing the perfect power factorization. Inverse symbolic problems are those for which the challenge is to compute a symbolic mathematical representation of a program or "black box". First, new algorithms are presented which improve the complexity of interpolation for sparse polynomials with coefficients in finite fields or approximate complex numbers. Second, the first polynomial-time algorithm for the more general problem of sparsest-shift interpolation is presented. The practical performance of all these algorithms is demonstrated with implementations in a high-performance library and compared to existing software and previous techniques.

Efficient Algorithms for Computations with Sparse Polynomials

Download Efficient Algorithms for Computations with Sparse Polynomials PDF Online Free

Author :
Release : 2011
Genre : Computational complexity
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Efficient Algorithms for Computations with Sparse Polynomials by : Seyed Mohammad Mahdi Javadi

Download or read book Efficient Algorithms for Computations with Sparse Polynomials written by Seyed Mohammad Mahdi Javadi. This book was released on 2011. Available in PDF, EPUB and Kindle. Book excerpt: The problem of interpolating a sparse polynomial has always been one of the central objects of research in the area of computer algebra. It is the key part of many algorithms such as polynomial GCD computation. We present a probabilistic algorithm to interpolate a sparse multivariate polynomial over a finite field, represented with a black box. Our algorithm modifies the Ben-Or/Tiwari algorithm from 1988 for interpolating polynomials over rings with characteristic zero to positive characteristics by doing additional probes. To interpolate a polynomial in n variables with t non-zero terms, Zippel's algorithm interpolates one variable at a time using O(ndt) probes to the black box where d bounds the degree of the polynomial. Our new algorithm does O(nt) probes. We provide benchmarks comparing our algorithm to Zippel's algorithm and the racing algorithm of Kaltofen/Lee. The benchmarks demonstrate that for sparse polynomials our algorithm often makes fewer probes. A key advantage in our new algorithm is, unlike the other two algorithms, it can be parallelized efficiently. Our main application for an efficient sparse interpolation algorithm is computing GCDs of polynomials. We are especially interested in polynomials over algebraic function fields. The best GCD algorithm available is SparseModGcd, presented by Javadi and Monagan in 2006. We further improve this algorithm in three ways. First we prove that we can eliminate the trial divisions in positive characteristic. Trial divisions are the bottleneck of the algorithm for denser polynomials. Second, we give a new (and correct) solution to the normalization problem. Finally we will present a new in-place library of functions for computing GCDs of univariate polynomials over algebraic number fields. Furthermore we present an efficient algorithm for factoring multivariate polynomials over algebraic fields with multiple field extensions and parameters. Our algorithm uses Hensel lifting and extends the EEZ algorithm of Wang which was designed for factorization over rationals. We also give a multivariate p-adic lifting algorithm which uses sparse interpolation. This enables us to avoid using poor bounds on the size of the integer coefficients in the factorization when using Hensel lifting. We provide timings demonstrating the efficiency of our algorithm.

Effective Polynomial Computation

Download Effective Polynomial Computation PDF Online Free

Author :
Release : 2012-12-06
Genre : Computers
Kind : eBook
Book Rating : 888/5 ( reviews)

GET EBOOK


Book Synopsis Effective Polynomial Computation by : Richard Zippel

Download or read book Effective Polynomial Computation written by Richard Zippel. This book was released on 2012-12-06. Available in PDF, EPUB and Kindle. Book excerpt: Effective Polynomial Computation is an introduction to the algorithms of computer algebra. It discusses the basic algorithms for manipulating polynomials including factoring polynomials. These algorithms are discussed from both a theoretical and practical perspective. Those cases where theoretically optimal algorithms are inappropriate are discussed and the practical alternatives are explained. Effective Polynomial Computation provides much of the mathematical motivation of the algorithms discussed to help the reader appreciate the mathematical mechanisms underlying the algorithms, and so that the algorithms will not appear to be constructed out of whole cloth. Preparatory to the discussion of algorithms for polynomials, the first third of this book discusses related issues in elementary number theory. These results are either used in later algorithms (e.g. the discussion of lattices and Diophantine approximation), or analogs of the number theoretic algorithms are used for polynomial problems (e.g. Euclidean algorithm and p-adic numbers). Among the unique features of Effective Polynomial Computation is the detailed material on greatest common divisor and factoring algorithms for sparse multivariate polynomials. In addition, both deterministic and probabilistic algorithms for irreducibility testing of polynomials are discussed.

Sparse Polynomial Approximation of High-Dimensional Functions

Download Sparse Polynomial Approximation of High-Dimensional Functions PDF Online Free

Author :
Release : 2022-02-16
Genre : Mathematics
Kind : eBook
Book Rating : 88X/5 ( reviews)

GET EBOOK


Book Synopsis Sparse Polynomial Approximation of High-Dimensional Functions by : Ben Adcock

Download or read book Sparse Polynomial Approximation of High-Dimensional Functions written by Ben Adcock . This book was released on 2022-02-16. Available in PDF, EPUB and Kindle. Book excerpt: Over seventy years ago, Richard Bellman coined the term “the curse of dimensionality” to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation—that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.

Computational Mathematics with SageMath

Download Computational Mathematics with SageMath PDF Online Free

Author :
Release : 2018-12-10
Genre : Science
Kind : eBook
Book Rating : 45X/5 ( reviews)

GET EBOOK


Book Synopsis Computational Mathematics with SageMath by : P. Zimmermann

Download or read book Computational Mathematics with SageMath written by P. Zimmermann. This book was released on 2018-12-10. Available in PDF, EPUB and Kindle. Book excerpt: This fantastic and deep book about how to use Sage for learning and doing mathematics at all levels perfectly complements the existing Sage documentation. It is filled with many carefully thought through examples and exercises, and great care has been taken to put computational functionality into proper mathematical context. Flip to almost any random page in this amazing book, and you will learn how to play with and visualize some beautiful part of mathematics. --- William A. Stein, CEO, SageMath, and professor of mathematics, University of Washington SageMath, or Sage for short, is an open-source mathematical software system based on the Python language and developed by an international community comprising hundreds of teachers and researchers, whose aim is to provide an alternative to the commercial products Magma, Maple, Mathematica, and MATLAB. To achieve this, Sage relies on many open-source programs, including GAP, Maxima, PARI, and various scientific libraries for Python, to which thousands of new functions have been added. Sage is freely available and is supported by all modern operating systems. Sage provides a wonderful scientific and graphical calculator for high school students, and it efficiently supports undergraduates in their computations in analysis, linear algebra, calculus, etc. For graduate students, researchers, and engineers in various mathematical specialties, Sage provides the most recent algorithms and tools, which is why several universities around the world already use Sage at the undergraduate level.

You may also like...