Share

Distributed Moving Base Driving Simulators

Download Distributed Moving Base Driving Simulators PDF Online Free

Author :
Release : 2019-04-30
Genre :
Kind : eBook
Book Rating : 900/5 ( reviews)

GET EBOOK


Book Synopsis Distributed Moving Base Driving Simulators by : Anders Andersson

Download or read book Distributed Moving Base Driving Simulators written by Anders Andersson. This book was released on 2019-04-30. Available in PDF, EPUB and Kindle. Book excerpt: Development of new functionality and smart systems for different types of vehicles is accelerating with the advent of new emerging technologies such as connected and autonomous vehicles. To ensure that these new systems and functions work as intended, flexible and credible evaluation tools are necessary. One example of this type of tool is a driving simulator, which can be used for testing new and existing vehicle concepts and driver support systems. When a driver in a driving simulator operates it in the same way as they would in actual traffic, you get a realistic evaluation of what you want to investigate. Two advantages of a driving simulator are (1.) that you can repeat the same situation several times over a short period of time, and (2.) you can study driver reactions during dangerous situations that could result in serious injuries if they occurred in the real world. An important component of a driving simulator is the vehicle model, i.e., the model that describes how the vehicle reacts to its surroundings and driver inputs. To increase the simulator realism or the computational performance, it is possible to divide the vehicle model into subsystems that run on different computers that are connected in a network. A subsystem can also be replaced with hardware using so-called hardware-in-the-loop simulation, and can then be connected to the rest of the vehicle model using a specified interface. The technique of dividing a model into smaller subsystems running on separate nodes that communicate through a network is called distributed simulation. This thesis investigates if and how a distributed simulator design might facilitate the maintenance and new development required for a driving simulator to be able to keep up with the increasing pace of vehicle development. For this purpose, three different distributed simulator solutions have been designed, built, and analyzed with the aim of constructing distributed simulators, including external hardware, where the simulation achieves the same degree of realism as with a traditional driving simulator. One of these simulator solutions has been used to create a parameterized powertrain model that can be configured to represent any of a number of different vehicles. Furthermore, the driver's driving task is combined with the powertrain model to monitor deviations. After the powertrain model was created, subsystems from a simulator solution and the powertrain model have been transferred to a Modelica environment. The goal is to create a framework for requirement testing that guarantees sufficient realism, also for a distributed driving simulation. The results show that the distributed simulators we have developed work well overall with satisfactory performance. It is important to manage the vehicle model and how it is connected to a distributed system. In the distributed driveline simulator setup, the network delays were so small that they could be ignored, i.e., they did not affect the driving experience. However, if one gradually increases the delays, a driver in the distributed simulator will change his/her behavior. The impact of communication latency on a distributed simulator also depends on the simulator application, where different usages of the simulator, i.e., different simulator studies, will have different demands. We believe that many simulator studies could be performed using a distributed setup. One issue is how modifications to the system affect the vehicle model and the desired behavior. This leads to the need for methodology for managing model requirements. In order to detect model deviations in the simulator environment, a monitoring aid has been implemented to help notify test managers when a model behaves strangely or is driven outside of its validated region. Since the availability of distributed laboratory equipment can be limited, the possibility of using Modelica (which is an equation-based and object-oriented programming language) for simulating subsystems is also examined. Implementation of the model in Modelica has also been extended with requirements management, and in this work a framework is proposed for automatically evaluating the model in a tool.

Extensions for Distributed Moving Base Driving Simulators

Download Extensions for Distributed Moving Base Driving Simulators PDF Online Free

Author :
Release : 2017-03-30
Genre :
Kind : eBook
Book Rating : 244/5 ( reviews)

GET EBOOK


Book Synopsis Extensions for Distributed Moving Base Driving Simulators by : Anders Andersson

Download or read book Extensions for Distributed Moving Base Driving Simulators written by Anders Andersson. This book was released on 2017-03-30. Available in PDF, EPUB and Kindle. Book excerpt: Modern vehicles are complex systems. Different design stages for such a complex system include evaluation using models and submodels, hardware-in-the-loop systems and complete vehicles. Once a vehicle is delivered to the market evaluation continues by the public. One kind of tool that can be used during many stages of a vehicle lifecycle is driving simulators. The use of driving simulators with a human driver is commonly focused on driver behavior. In a high fidelity moving base driving simulator it is possible to provide realistic and repetitive driving situations using distinctive features such as: physical modelling of driven vehicle, a moving base, a physical cabin interface and an audio and visual representation of the driving environment. A desired but difficult goal to achieve using a moving base driving simulator is to have behavioral validity. In other words, A driver in a moving base driving simulator should have the same driving behavior as he or she would have during the same driving task in a real vehicle.". In this thesis the focus is on high fidelity moving base driving simulators. The main target is to improve the behavior validity or to maintain behavior validity while adding complexity to the simulator. One main assumption in this thesis is that systems closer to the final product provide better accuracy and are perceived better if properly integrated. Thus, the approach in this thesis is to try to ease incorporation of such systems using combinations of the methods hardware-in-the-loop and distributed simulation. Hardware-in-the-loop is a method where hardware is interfaced into a software controlled environment/simulation. Distributed simulation is a method where parts of a simulation at physically different locations are connected together. For some simulator laboratories distributed simulation is the only feasible option since some hardware cannot be moved in an easy way. Results presented in this thesis show that a complete vehicle or hardware-in-the-loop test laboratory can successfully be connected to a moving base driving simulator. Further, it is demonstrated that using a framework for distributed simulation eases communication and integration due to standardized interfaces. One identified potential problem is complexity in interface wrappers when integrating hardware-in-the-loop in a distributed simulation framework. From this aspect, it is important to consider the model design and the intersections between software and hardware models. Another important issue discussed is the increased delay in overhead time when using a framework for distributed simulation.

A Moving Base Driving Simulator with Wide Angle Visual System

Download A Moving Base Driving Simulator with Wide Angle Visual System PDF Online Free

Author :
Release : 1985
Genre : Automobile driving simulators
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis A Moving Base Driving Simulator with Wide Angle Visual System by : G. Palmkvist

Download or read book A Moving Base Driving Simulator with Wide Angle Visual System written by G. Palmkvist. This book was released on 1985. Available in PDF, EPUB and Kindle. Book excerpt:

Parameterized Verification of Synchronized Concurrent Programs

Download Parameterized Verification of Synchronized Concurrent Programs PDF Online Free

Author :
Release : 2021-03-19
Genre :
Kind : eBook
Book Rating : 971/5 ( reviews)

GET EBOOK


Book Synopsis Parameterized Verification of Synchronized Concurrent Programs by : Zeinab Ganjei

Download or read book Parameterized Verification of Synchronized Concurrent Programs written by Zeinab Ganjei. This book was released on 2021-03-19. Available in PDF, EPUB and Kindle. Book excerpt: There is currently an increasing demand for concurrent programs. Checking the correctness of concurrent programs is a complex task due to the interleavings of processes. Sometimes, violation of the correctness properties in such systems causes human or resource losses; therefore, it is crucial to check the correctness of such systems. Two main approaches to software analysis are testing and formal verification. Testing can help discover many bugs at a low cost. However, it cannot prove the correctness of a program. Formal verification, on the other hand, is the approach for proving program correctness. Model checking is a formal verification technique that is suitable for concurrent programs. It aims to automatically establish the correctness (expressed in terms of temporal properties) of a program through an exhaustive search of the behavior of the system. Model checking was initially introduced for the purpose of verifying finite‐state concurrent programs, and extending it to infinite‐state systems is an active research area. In this thesis, we focus on the formal verification of parameterized systems. That is, systems in which the number of executing processes is not bounded a priori. We provide fully-automatic and parameterized model checking techniques for establishing the correctness of safety properties for certain classes of concurrent programs. We provide an open‐source prototype for every technique and present our experimental results on several benchmarks. First, we address the problem of automatically checking safety properties for bounded as well as parameterized phaser programs. Phaser programs are concurrent programs that make use of the complex synchronization construct of Habanero Java phasers. For the bounded case, we establish the decidability of checking the violation of program assertions and the undecidability of checking deadlock‐freedom. For the parameterized case, we study different formulations of the verification problem and propose an exact procedure that is guaranteed to terminate for some reachability problems even in the presence of unbounded phases and arbitrarily many spawned processes. Second, we propose an approach for automatic verification of parameterized concurrent programs in which shared variables are manipulated by atomic transitions to count and synchronize the spawned processes. For this purpose, we introduce counting predicates that related counters that refer to the number of processes satisfying some given properties to the variables that are directly manipulated by the concurrent processes. We then combine existing works on the counter, predicate, and constrained monotonic abstraction and build a nested counterexample‐based refinement scheme to establish correctness. Third, we introduce Lazy Constrained Monotonic Abstraction for more efficient exploration of well‐structured abstractions of infinite‐state non‐monotonic systems. We propose several heuristics and assess the efficiency of the proposed technique by extensive experiments using our open‐source prototype. Lastly, we propose a sound but (in general) incomplete procedure for automatic verification of safety properties for a class of fault‐tolerant distributed protocols described in the Heard‐Of (HO for short) model. The HO model is a popular model for describing distributed protocols. We propose a verification procedure that is guaranteed to terminate even for unbounded number of the processes that execute the distributed protocol.

Orchestrating a Resource-aware Edge

Download Orchestrating a Resource-aware Edge PDF Online Free

Author :
Release : 2024-09-02
Genre :
Kind : eBook
Book Rating : 480/5 ( reviews)

GET EBOOK


Book Synopsis Orchestrating a Resource-aware Edge by : Klervie Toczé

Download or read book Orchestrating a Resource-aware Edge written by Klervie Toczé. This book was released on 2024-09-02. Available in PDF, EPUB and Kindle. Book excerpt: More and more services are moving to the cloud, attracted by the promise of unlimited resources that are accessible anytime, and are managed by someone else. However, hosting every type of service in large cloud datacenters is not possible or suitable, as some emerging applications have stringent latency or privacy requirements, while also handling huge amounts of data. Therefore, in recent years, a new paradigm has been proposed to address the needs of these applications: the edge computing paradigm. Resources provided at the edge (e.g., for computation and communication) are constrained, hence resource management is of crucial importance. The incoming load to the edge infrastructure varies both in time and space. Managing the edge infrastructure so that the appropriate resources are available at the required time and location is called orchestrating. This is especially challenging in case of sudden load spikes and when the orchestration impact itself has to be limited. This thesis enables edge computing orchestration with increased resource-awareness by contributing with methods, techniques, and concepts for edge resource management. First, it proposes methods to better understand the edge resource demand. Second, it provides solutions on the supply side for orchestrating edge resources with different characteristics in order to serve edge applications with satisfactory quality of service. Finally, the thesis includes a critical perspective on the paradigm, by considering sustainability challenges. To understand the demand patterns, the thesis presents a methodology for categorizing the large variety of use cases that are proposed in the literature as potential applications for edge computing. The thesis also proposes methods for characterizing and modeling applications, as well as for gathering traces from real applications and analyzing them. These different approaches are applied to a prototype from a typical edge application domain: Mixed Reality. The important insight here is that application descriptions or models that are not based on a real application may not be giving an accurate picture of the load. This can drive incorrect decisions about what should be done on the supply side and thus waste resources. Regarding resource supply, the thesis proposes two orchestration frameworks for managing edge resources and successfully dealing with load spikes while avoiding over-provisioning. The first one utilizes mobile edge devices while the second leverages the concept of spare devices. Then, focusing on the request placement part of orchestration, the thesis formalizes it in the case of applications structured as chains of functions (so-called microservices) as an instance of the Traveling Purchaser Problem and solves it using Integer Linear Programming. Two different energy metrics influencing request placement decisions are proposed and evaluated. Finally, the thesis explores further resource awareness. Sustainability challenges that should be highlighted more within edge computing are collected. Among those related to resource use, the strategy of sufficiency is promoted as a way forward. It involves aiming at only using the needed resources (no more, no less) with a goal of reducing resource usage. Different tools to adopt it are proposed and their use demonstrated through a case study.

You may also like...