Share

Developing Coupled Fluid Flow and Geomechanics Simulators to Model Fracture Deformation

Download Developing Coupled Fluid Flow and Geomechanics Simulators to Model Fracture Deformation PDF Online Free

Author :
Release : 2019
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Developing Coupled Fluid Flow and Geomechanics Simulators to Model Fracture Deformation by : Mohsen Babazadeh

Download or read book Developing Coupled Fluid Flow and Geomechanics Simulators to Model Fracture Deformation written by Mohsen Babazadeh. This book was released on 2019. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation intends to advance fundamental understanding of two areas of interest in the petroleum industry: complex stimulated fracture network during hydraulic fracturing treatments and induced seismicity during wastewater disposal operations. Successful completion of hydraulic fractures in unconventional formations has been the primary source of increased oil and gas production in the US. However, field observations suggest that the hydraulic fracture networks are much more complex and different from the classical description of bi-wing planar fractures. Thus, the attempts to optimize this stimulation technique are hindered by the uncertainties in predicting the complex fracture network. A by-product of massive improvement in oil and gas production is a significant amount of water being co-produced from these formations. The common practice in the industry is to recycle wastewater for hydraulic fracturing purposes or reinject it into the reservoir through disposal wells. In certain regions of the US, this wastewater injection has led to historically high seismicity rates and earthquakes of Magnitude 5 and above which caused the public to be concerned. To maintain the social license to continue such operations, these concerns need to be addressed, and the physics behind such induced events need to be understood. Two novel hydraulic fracturing and induced seismicity simulators are developed that implicitly couple fluid flow with the stresses induced by fracture deformation in large, complex, three-dimensional discrete fracture networks. The simulators can describe the propagation of hydraulic fractures and opening and shear stimulation of natural fractures. Fracture elements can open or slide, depending on their stress state, fluid pressure, and mechanical properties. Fracture sliding occurs in the direction of maximum resolved shear stress. Nonlinear empirical relations are used to relate normal stress, fracture opening, and fracture sliding to fracture aperture and transmissivity. Field-scale hydraulic fracturing simulations were performed in a dense naturally fractured formation. Height containment of propagating hydraulic fractures between bedding layers is modeled with a vertically heterogeneous stress field or by explicitly imposing hydraulic fracture height containment as a model assumption. The propagating hydraulic fractures can cross natural fractures or terminate against them depending on the natural fracture orientation and stress anisotropy. The simulations demonstrate how interaction with natural fractures in the formation can help explain the high net pressures, relatively short hydraulic fracture lengths, and broad regions of microseismicity that are often observed in the field during stimulation in low permeability formations, some of which were not predicted by classical hydraulic fracturing models. Depending on input parameters, our simulations predicted a variety of stimulation behaviors, from long hydraulic fractures with minimal leakoff into surrounding fractures to broad regions of dense fracturing with a branching network of many natural and newly formed fractures. Induced seismicity simulator was developed to investigate the effects of multiple operational, hydraulic, and geophysical parameters on the magnitude of induced earthquakes. The rate-and-state framework is implemented to include the effect of fault nonlinear friction evolution and to model unstable earthquake rupture. The Embedded Discrete Fracture Model (EDFM) technique is used to model the fluid flow between the matrix and fractures efficiently. The results show that high-rate injections are more likely to induce a more significant earthquake, confirming the statistical correlation attributing induced events to high-rate injection wells. To understand the seismic occurrence outside of the injection zone, the effect of fault permeability structure on seismicity is studied by assigning non-uniform permeabilities as an input parameter. The model shows that the fault rupture is dominantly controlled by initial pressure and stress heterogeneity which ultimately affect the magnitude of an induced earthquake event

Discrete Fracture Network Modeling of Hydraulic Stimulation

Download Discrete Fracture Network Modeling of Hydraulic Stimulation PDF Online Free

Author :
Release : 2013-06-15
Genre : Technology & Engineering
Kind : eBook
Book Rating : 836/5 ( reviews)

GET EBOOK


Book Synopsis Discrete Fracture Network Modeling of Hydraulic Stimulation by : Mark W. McClure

Download or read book Discrete Fracture Network Modeling of Hydraulic Stimulation written by Mark W. McClure. This book was released on 2013-06-15. Available in PDF, EPUB and Kindle. Book excerpt: Discrete Fracture Network Modeling of Hydraulic Stimulation describes the development and testing of a model that couples fluid-flow, deformation, friction weakening, and permeability evolution in large, complex two-dimensional discrete fracture networks. The model can be used to explore the behavior of hydraulic stimulation in settings where matrix permeability is low and preexisting fractures play an important role, such as Enhanced Geothermal Systems and gas shale. Used also to describe pure shear stimulation, mixed-mechanism stimulation, or pure opening-mode stimulation. A variety of novel techniques to ensure efficiency and realistic model behavior are implemented, and tested. The simulation methodology can also be used as an efficient method for directly solving quasistatic fracture contact problems. Results show how stresses induced by fracture deformation during stimulation directly impact the mechanism of propagation and the resulting fracture network.

Discrete Fracture Network Modeling of Hydraulic Stimulation

Download Discrete Fracture Network Modeling of Hydraulic Stimulation PDF Online Free

Author :
Release : 2013-06-19
Genre : Science
Kind : eBook
Book Rating : 849/5 ( reviews)

GET EBOOK


Book Synopsis Discrete Fracture Network Modeling of Hydraulic Stimulation by : Mark McClure

Download or read book Discrete Fracture Network Modeling of Hydraulic Stimulation written by Mark McClure. This book was released on 2013-06-19. Available in PDF, EPUB and Kindle. Book excerpt: Discrete Fracture Network Modeling of Hydraulic Stimulation describes the development and testing of a model that couples fluid-flow, deformation, friction weakening, and permeability evolution in large, complex two-dimensional discrete fracture networks. The model can be used to explore the behavior of hydraulic stimulation in settings where matrix permeability is low and preexisting fractures play an important role, such as Enhanced Geothermal Systems and gas shale. Used also to describe pure shear stimulation, mixed-mechanism stimulation, or pure opening-mode stimulation. A variety of novel techniques to ensure efficiency and realistic model behavior are implemented, and tested. The simulation methodology can also be used as an efficient method for directly solving quasistatic fracture contact problems. Results show how stresses induced by fracture deformation during stimulation directly impact the mechanism of propagation and the resulting fracture network.

Hydraulic Fracture Modeling

Download Hydraulic Fracture Modeling PDF Online Free

Author :
Release : 2017-11-30
Genre : Technology & Engineering
Kind : eBook
Book Rating : 999/5 ( reviews)

GET EBOOK


Book Synopsis Hydraulic Fracture Modeling by : Yu-Shu Wu

Download or read book Hydraulic Fracture Modeling written by Yu-Shu Wu. This book was released on 2017-11-30. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs

Download Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs PDF Online Free

Author :
Release : 2013
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs by : Ali Moinfar

Download or read book Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs written by Ali Moinfar. This book was released on 2013. Available in PDF, EPUB and Kindle. Book excerpt: Naturally fractured reservoirs (NFRs) hold a significant amount of the world's hydrocarbon reserves. Compared to conventional reservoirs, NFRs exhibit a higher degree of heterogeneity and complexity created by fractures. The importance of fractures in production of oil and gas is not limited to naturally fractured reservoirs. The economic exploitation of unconventional reservoirs, which is increasingly a major source of short- and long-term energy in the United States, hinges in part on effective stimulation of low-permeability rock through multi-stage hydraulic fracturing of horizontal wells. Accurate modeling and simulation of fractured media is still challenging owing to permeability anisotropies and contrasts. Non-physical abstractions inherent in conventional dual porosity and dual permeability models make these methods inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent approaches for discrete fracture modeling may require large computational times and hence the oil industry has not widely used such approaches, even though they give more accurate representations of fractured reservoirs than dual continuum models. We developed an embedded discrete fracture model (EDFM) for an in-house fully-implicit compositional reservoir simulator. EDFM borrows the dual-medium concept from conventional dual continuum models and also incorporates the effect of each fracture explicitly. In contrast to dual continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity and heterogeneity of a typical fractured reservoir. EDFM employs a structured grid to remediate challenges associated with unstructured gridding required for other discrete fracture models. Also, the EDFM approach can be easily incorporated in existing finite difference reservoir simulators. The accuracy of the EDFM approach was confirmed by comparing the results with analytical solutions and fine-grid, explicit-fracture simulations. Comparison of our results using the EDFM approach with fine-grid simulations showed that accurate results can be achieved using moderate grid refinements. This was further verified in a mesh sensitivity study that the EDFM approach with moderate grid refinement can obtain a converged solution. Hence, EDFM offers a computationally-efficient approach for simulating fluid flow in NFRs. Furthermore, several case studies presented in this study demonstrate the applicability, robustness, and efficiency of the EDFM approach for modeling fluid flow in fractured porous media. Another advantage of EDFM is its extensibility for various applications by incorporating different physics in the model. In order to examine the effect of pressure-dependent fracture properties on production, we incorporated the dynamic behavior of fractures into EDFM by employing empirical fracture deformation models. Our simulations showed that fracture deformation, caused by effective stress changes, substantially affects pressure depletion and hydrocarbon recovery. Based on the examples presented in this study, implementation of fracture geomechanical effects in EDFM did not degrade the computational performance of EDFM. Many unconventional reservoirs comprise well-developed natural fracture networks with multiple orientations and complex hydraulic fracture patterns suggested by microseismic data. We developed a coupled dual continuum and discrete fracture model to efficiently simulate production from these reservoirs. Large-scale hydraulic fractures were modeled explicitly using the EDFM approach and numerous small-scale natural fractures were modeled using a dual continuum approach. The transport parameters for dual continuum modeling of numerous natural fractures were derived by upscaling the EDFM equations. Comparison of the results using the coupled model with that of using the EDFM approach to represent all natural and hydraulic fractures explicitly showed that reasonably accurate results can be obtained at much lower computational cost by using the coupled approach with moderate grid refinements.

You may also like...