Share

Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem

Download Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem PDF Online Free

Author :
Release : 2009
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem by :

Download or read book Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem written by . This book was released on 2009. Available in PDF, EPUB and Kindle. Book excerpt: The United States Department of Energy is promoting the resurgence of nuclear power in the U.S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 ðC to perhaps 1000 ðC. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U.S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present report presents results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made.

Development of a CFD Analysis Plan for the First VHTR Standard Problem

Download Development of a CFD Analysis Plan for the First VHTR Standard Problem PDF Online Free

Author :
Release : 2008
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Development of a CFD Analysis Plan for the First VHTR Standard Problem by :

Download or read book Development of a CFD Analysis Plan for the First VHTR Standard Problem written by . This book was released on 2008. Available in PDF, EPUB and Kindle. Book excerpt: Data from a scaled model of a portion of the lower plenum of the helium-cooled very high temperature reactor (VHTR) are under consideration for acceptance as a computational fluid dynamics (CFD) validation data set or standard problem. A CFD analysis will help determine if the scaled model is a suitable geometry for validation data. The present article describes the development of an analysis plan for the CFD model. The plan examines the boundary conditions that should be used, the extent of the computational domain that should be included and which turbulence models need not be examined against the data. Calculations are made for a closely related 2D geometry to address these issues. It was found that a CFD model that includes only the inside of the scaled model in its computational domain is adequate for CFD calculations. The realizable k~e model was found not to be suitable for this problem because it did not predict vortex-shedding.

Standard Problems for CFD Validation for NGNP - Status Report

Download Standard Problems for CFD Validation for NGNP - Status Report PDF Online Free

Author :
Release : 2010
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Standard Problems for CFD Validation for NGNP - Status Report by :

Download or read book Standard Problems for CFD Validation for NGNP - Status Report written by . This book was released on 2010. Available in PDF, EPUB and Kindle. Book excerpt: The U.S. Department of Energy (DOE) is conducting research and development to support the resurgence of nuclear power in the United States for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The project is called the Next Generation Nuclear Plant (NGNP) Project, which is based on a Generation IV reactor concept called the very high temperature reactor (VHTR). The VHTR will be of the prismatic or pebble bed type; the former is considered herein. The VHTR will use helium as the coolant at temperatures ranging from 250°C to perhaps 1000°C. While computational fluid dynamics (CFD) has not previously been used for the safety analysis of nuclear reactors in the United States, it is being considered for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal operational and accident situations. The "Standard Problem" is an experimental data set that represents an important physical phenomenon or phenomena, whose selection is based on a phenomena identification and ranking table (PIRT) for the reactor in question. It will be necessary to build a database that contains a number of standard problems for use to validate CFD and systems analysis codes for the many physical problems that will need to be analyzed. The first two standard problems that have been developed for CFD validation consider flow in the lower plenum of the VHTR and bypass flow in the prismatic core. Both involve scaled models built from quartz and designed to be installed in the INL's matched index of refraction (MIR) test facility. The MIR facility employs mineral oil as the working fluid at a constant temperature. At this temperature, the index of refraction of the mineral oil is the same as that of the quartz. This provides an advantage to the optics used for data gathering. Particle image velocimetry (PIV) is used to take the data. The first standard problem represents several flow physics expected to be present in the lower plenum of the prismatic VHTR. In the lower plenum, heated helium coolant in the form of jets issues downward into the plenum and is then forced to turn ninety degrees and flow toward the exit duct. The lower plenum is filled with cylindrical graphite posts that hold up the core. Figure S-1 provides a plan view of the lower plenum. The red circles represent support posts holding up columns of heated blocks. Grey circles represent support posts under columns of reflector blocks. Helium enters the lower plenum at the junctions of the hexagonal blocks.

Computational Fluid Dynamics

Download Computational Fluid Dynamics PDF Online Free

Author :
Release : 2011-07-05
Genre : Computers
Kind : eBook
Book Rating : 699/5 ( reviews)

GET EBOOK


Book Synopsis Computational Fluid Dynamics by : Oleg Minin

Download or read book Computational Fluid Dynamics written by Oleg Minin. This book was released on 2011-07-05. Available in PDF, EPUB and Kindle. Book excerpt: This book is planned to publish with an objective to provide a state-of-art reference book in the area of computational fluid dynamics for CFD engineers, scientists, applied physicists and post-graduate students. Also the aim of the book is the continuous and timely dissemination of new and innovative CFD research and developments. This reference book is a collection of 14 chapters characterized in 4 parts: modern principles of CFD, CFD in physics, industrial and in castle. This book provides a comprehensive overview of the computational experiment technology, numerical simulation of the hydrodynamics and heat transfer processes in a two dimensional gas, application of lattice Boltzmann method in heat transfer and fluid flow, etc. Several interesting applications area are also discusses in the book like underwater vehicle propeller, the flow behavior in gas-cooled nuclear reactors, simulation odour dispersion around windbreaks and so on.

Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor

Download Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor PDF Online Free

Author :
Release : 2007
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor by :

Download or read book Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor written by . This book was released on 2007. Available in PDF, EPUB and Kindle. Book excerpt: Mean velocity field and turbulence data are presented for flow phenomena in a lower plenum of a typical prismatic gas-cooled reactor (GCR), such as in a Very High Temperature Reactor (VHTR) concept. In preparation for design, safety analyses and licensing, research has begun on readying the computational tools that will be needed to predict the thermal-hydraulics behavior of the reactor design. Fluid dynamics experiments have been designed and built to develop benchmark databases for the assessment of computational fluid dynamics (CFD) codes and their turbulence models for a typical VHTR plenum geometry in the limiting case of negligible buoyancy and constant fluid properties. This experiment has been proposed as a "Standard Problem" for assessing advanced reactor (CFD) analysis tools. Present results concentrate on the region of the plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum can locally be considered as multiple jets into a confined cross flow - with obstructions. A model of the lower plenum has been fabricated and scaled to the geometric dimensions of the Next Generation Nuclear Plant (NGNP) Point Design. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to induce flow features somewhat comparable to those expected from the staggered parallel rows of posts in the reactor design. Posts, side walls and end walls are fabricated from clear, fused quartz to match the refractive-index of the working fluid so that optical techniques may be employed for the measurements. The experiments were conducted in the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Laboratory (INL). The benefit of the MIR technique is that it permits optical measurements to determine complex flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The innovative advantage of the INL system is its large size, leading to improved spatial and temporal resolution compared to others. Light mineral oil is used as the working fluid. For the data reported a 3-D Particle Image Velocimetry (PIV) system is used. The measurements reveal complicated flow patterns that include several large recirculation areas, reverse flow near the simulated reflector wall, recirculation areas in the upper portion of the plenum and complex flow patterns around the support posts. Data that will be presented include three-dimensional PIV images of flow planes, data displays along the three coordinate planes (slices) and presentations that describe the component flows at specific regions in the model.

You may also like...