Share

Complexity Lower Bounds Using Linear Algebra

Download Complexity Lower Bounds Using Linear Algebra PDF Online Free

Author :
Release : 2009-07-20
Genre : Computers
Kind : eBook
Book Rating : 429/5 ( reviews)

GET EBOOK


Book Synopsis Complexity Lower Bounds Using Linear Algebra by : Satyanarayana V. Lokam

Download or read book Complexity Lower Bounds Using Linear Algebra written by Satyanarayana V. Lokam. This book was released on 2009-07-20. Available in PDF, EPUB and Kindle. Book excerpt: We survey several techniques for proving lower bounds in Boolean, algebraic, and communication complexity based on certain linear algebraic approaches. The common theme among these approaches is to study robustness measures of matrix rank that capture the complexity in a given model. Suitably strong lower bounds on such robustness functions of explicit matrices lead to important consequences in the corresponding circuit or communication models. Many of the linear algebraic problems arising from these approaches are independently interesting mathematical challenges.

Lower Bounds in Communication Complexity

Download Lower Bounds in Communication Complexity PDF Online Free

Author :
Release : 2009
Genre : Computers
Kind : eBook
Book Rating : 585/5 ( reviews)

GET EBOOK


Book Synopsis Lower Bounds in Communication Complexity by : Troy Lee

Download or read book Lower Bounds in Communication Complexity written by Troy Lee. This book was released on 2009. Available in PDF, EPUB and Kindle. Book excerpt: The communication complexity of a function f(x, y) measures the number of bits that two players, one who knows x and the other who knows y, must exchange to determine the value f(x, y). Communication complexity is a fundamental measure of complexity of functions. Lower bounds on this measure lead to lower bounds on many other measures of computational complexity. This monograph surveys lower bounds in the field of communication complexity. Our focus is on lower bounds that work by first representing the communication complexity measure in Euclidean space. That is to say, the first step in these lower bound techniques is to find a geometric complexity measure, such as rank or trace norm, that serves as a lower bound to the underlying communication complexity measure. Lower bounds on this geometric complexity measure are then found using algebraic and geometric tools.

Lower Bounds in Computational Complexity from Information Theory, Algebra and Combinatorics

Download Lower Bounds in Computational Complexity from Information Theory, Algebra and Combinatorics PDF Online Free

Author :
Release : 2020
Genre : Algebra
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Lower Bounds in Computational Complexity from Information Theory, Algebra and Combinatorics by : Sivaramakrishnan Natarajan Ramamoorthy

Download or read book Lower Bounds in Computational Complexity from Information Theory, Algebra and Combinatorics written by Sivaramakrishnan Natarajan Ramamoorthy. This book was released on 2020. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we study basic lower bound questions in communication complexity, data structures and depth-2 threshold circuits, and prove lower bounds in these models by devising new techniques in information theory, algebra and combinatorics. Communication Complexity: A central open problem in communication complexity is to determine whether the messages exchanged by two parties can be compressed if we know that the amount of information revealed by the parties about their inputs is small. We consider the compression question when the information revealed by one of the parties is much less than the information revealed by the other. In this setting, we prove two new improved compression schemes. Data Structures: Our contribution to data structure lower bounds is threefold: (a) Consider the Vector-Matrix-Vector problem, in which the data structure stores a \sqrt{n} \times \sqrt{n} bit matrix and provides an algorithm to compute uMv (mod 2) for \sqrt{n}-bit vectors u, v. We prove new static data structure lower bounds for this problem, which improve upon the previous work of Chattopadhyay, Kouck\'{y}, Loff, and Mukhopadhyay by a factor of log n. Our proof uses a new technique by combining the discrepancy method from communication complexity with a modification of cell sampling. This technique turns out to be more general, and can be used to prove strong lower bounds for data structures that err and have a binary query output. (b) We show new connections between systematic linear data structures, linear data structures and matrix rigidity. Specifically, we prove the equivalence between systematic linear data structures and set rigidity, a relaxation of matrix rigidity that was defined by Alon, Panigrahy and Yekhanin. This equivalence not only sheds light on the difficulty of proving strong lower bounds against data structures but also suggests candidate rigid sets from data structures. We also use this equivalence to relate linear data structures and rigidity. (c) We study data structures that maintain a set from {1,2,...,n}, allow insertion of new elements and report the median, minimum or predecessors of the set. In particular, we prove that if one of the operations of the data structure is non-adaptive and each cell in memory stores O(log n) bits, then some operation must take time Omega(log n/ log log n). This bound nearly matches the guarantees of binary search trees, whose insertions and predecessor operations can be made non-adaptive. Our lower bounds are obtained via the sunflower lemma from combinatorics. Balancing Sets and Depth-2 Threshold Circuits: Majority and threshold circuits are important sub-classes of Boolean circuits. Kulikov and Podoslkii asked the question of finding the minimum fan-in required to compute the majority of n-bits using a depth-2 majority circuit. We identify a connection between this circuit question and Galvin's balancing sets problem from combinatorics, a well studied discrepancy-type question that was initiated by the work of Frankl and R{\"o}dl. We use this finding to prove tight bounds for both the circuit question and Galvin's problem. The proofs use polynomials over finite fields.In this thesis, we study basic lower bound questions in communication complexity, data structures and depth-2 threshold circuits, and prove lower bounds in these models by devising new techniques in information theory, algebra and combinatorics. Communication Complexity: A central open problem in communication complexity is to determine whether the messages exchanged by two parties can be compressed if we know that the amount of information revealed by the parties about their inputs is small. We consider the compression question when the information revealed by one of the parties is much less than the information revealed by the other. In this setting, we prove two new improved compression schemes. Data Structures: Our contribution to data structure lower bounds is threefold: (a) Consider the Vector-Matrix-Vector problem, in which the data structure stores a \sqrt{n} \times \sqrt{n} bit matrix and provides an algorithm to compute uMv (mod 2) for \sqrt{n}-bit vectors u, v. We prove new static data structure lower bounds for this problem, which improve upon the previous work of Chattopadhyay, Kouck\'{y}, Loff, and Mukhopadhyay by a factor of log n. Our proof uses a new technique by combining the discrepancy method from communication complexity with a modification of cell sampling. This technique turns out to be more general, and can be used to prove strong lower bounds for data structures that err and have a binary query output. (b) We show new connections between systematic linear data structures, linear data structures and matrix rigidity. Specifically, we prove the equivalence between systematic linear data structures and set rigidity, a relaxation of matrix rigidity that was defined by Alon, Panigrahy and Yekhanin. This equivalence not only sheds light on the difficulty of proving strong lower bounds against data structures but also suggests candidate rigid sets from data structures. We also use this equivalence to relate linear data structures and rigidity. (c) We study data structures that maintain a set from {1,2,...,n}, allow insertion of new elements and report the median, minimum or predecessors of the set. In particular, we prove that if one of the operations of the data structure is non-adaptive and each cell in memory stores O(log n) bits, then some operation must take time Omega(log n/ log log n). This bound nearly matches the guarantees of binary search trees, whose insertions and predecessor operations can be made non-adaptive. Our lower bounds are obtained via the sunflower lemma from combinatorics. Balancing Sets and Depth-2 Threshold Circuits: Majority and threshold circuits are important sub-classes of Boolean circuits. Kulikov and Podoslkii asked the question of finding the minimum fan-in required to compute the majority of n-bits using a depth-2 majority circuit. We identify a connection between this circuit question and Galvin's balancing sets problem from combinatorics, a well studied discrepancy-type question that was initiated by the work of Frankl and R{\"o}dl. We use this finding to prove tight bounds for both the circuit question and Galvin's problem. The proofs use polynomials over finite fields.

Geometry and Complexity Theory

Download Geometry and Complexity Theory PDF Online Free

Author :
Release : 2017-09-28
Genre : Computers
Kind : eBook
Book Rating : 41X/5 ( reviews)

GET EBOOK


Book Synopsis Geometry and Complexity Theory by : J. M. Landsberg

Download or read book Geometry and Complexity Theory written by J. M. Landsberg. This book was released on 2017-09-28. Available in PDF, EPUB and Kindle. Book excerpt: Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.

Geometry and Complexity Theory

Download Geometry and Complexity Theory PDF Online Free

Author :
Release : 2017-09-28
Genre : Computers
Kind : eBook
Book Rating : 239/5 ( reviews)

GET EBOOK


Book Synopsis Geometry and Complexity Theory by : J. M. Landsberg

Download or read book Geometry and Complexity Theory written by J. M. Landsberg. This book was released on 2017-09-28. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive introduction to algebraic complexity theory presents new techniques for analyzing P vs NP and matrix multiplication.

You may also like...