Share

CO2 Geological Sequestration and Utilization for Enhanced Gas/oil Recovery from Molecular Perspectives

Download CO2 Geological Sequestration and Utilization for Enhanced Gas/oil Recovery from Molecular Perspectives PDF Online Free

Author :
Release : 2022
Genre : Carbon dioxide mitigation
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis CO2 Geological Sequestration and Utilization for Enhanced Gas/oil Recovery from Molecular Perspectives by : Mingshan Zhang

Download or read book CO2 Geological Sequestration and Utilization for Enhanced Gas/oil Recovery from Molecular Perspectives written by Mingshan Zhang. This book was released on 2022. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric CO2 concentration has been gradually growing since the industrial revolution, leading to climate change and global warming. As a result, carbon capture, utilization, and sequestration (CCUS) has become utterly important for human society. CO2 geological sequestration in depleted shale gas reservoirs is regarded as a promising strategy to mitigate the emission of CO2. As one of the typical clay minerals in shale reservoirs, kaolinite presents two structurally and chemically distinct basal surfaces known as siloxane and gibbsite surfaces which can significantly affect CO2 adsorption in kaolinite nanopores, especially in the presence of water. Nevertheless, due to the complicated surface properties and pore structures, it is practically impossible to distinguish the contributions from two distinct kaolinite surfaces for CO2 adsorption. In addition, to the best of our knowledge, the effect of moisture on CO2 adsorption in different kaolinite nanopores is rarely reported. We systematically explored CO2 adsorption in partially water-saturated kaolinite nanopores by molecular dynamics (MD) and Grand canonical Monte Carlo (GCMC) simulations using the flexible clay model. In the absence of water, CO2 presents a stronger adsorption ability on gibbsite surfaces. In gibbsite pores, the water tends to spread out on the surface forming a thin film while water bridges are observed in siloxane pores. In siloxane mesopores, a more CO2-wet surface appears as pressure increases, while it is not obvious in micropores because of stronger confinement effects. In general, the presence of water will result in the reduction of CO2 sequestration in both gibbsite and siloxane pores, while a slight enhancement is observed in siloxane mesopores when the pressure is quite low. CO2 utilization for enhancing gas recovery has been attracting extensive attention as it can greatly alleviate the financial burden from CO2 capture while it can also achieve CO2 sequestration in the deep formations. Compared with the conventional reservoirs, shale has heterogeneous rock compositions consisting of organic and inorganic matters and some shale formations contain anextensive number of heavier alkanes, such as ethane (C2) and propane (C3). While CO2 huff-n-puff is proved to be an effective method to enhance recovery of methane (C1), competitive adsorption between shale gas mixtures (C1-C2-C3) and CO2 in organic and clay minerals remains unexplored. On the other hand, the different recovery mechanisms of hydrocarbon mixtures during pressure drop, CO2 huff, and CO2 huff are still unclear. We used Grand Canonical Monte Carlo (GCMC) simulations to study competitive sorption of C1-C2-C3 and C1-C2-C3-CO2 mixtures in shale organic and inorganic nanopores under different production schemes. We found that while C1 in the adsorption layer can be readily recovered during pressure drawdown, C2 and C3 are trapped in pores, especially in organic micropores. CO2 injection can effectively recover each component in the adsorption layer in organic pores, while in inorganic pores, the adsorption layer is dominated by CO2 molecules, displacing all hydrocarbon components. Additionally, application of CO2 responsive surfactants provides a novel idea for economical and sustainable oil production. While the experimental work can test and design a promising smart surfactant formula for efficient O/W emulsification and demulsification processes, the microscopic structural properties and interface hydration structures related to CO2 switching mechanisms from molecular perspectives remain unclear. MD simulations are employed to carefully study the interfacial properties of n-heptane/water emulsion before and after purging CO2 using lauric acids (LA) as the surfactant. Before purging CO2, the deprotonated lauric acid (DLA) help to form and stabilize O/W emulsion droplets in aqueous solution due to high interface activity and strong surface electrostatic repulsion, whereas the protonation of lauric acid (PLA) arising from CO2 injection results in the coalescence of emulsion droplets thanks to the increased IFT and surface charge neutralization, which is also in line the potential mean force (PMF) calclation resutls.

Understanding Geologic Carbon Sequestration and Gas Hydrate from Molecular Simulation

Download Understanding Geologic Carbon Sequestration and Gas Hydrate from Molecular Simulation PDF Online Free

Author :
Release : 2024-03-09
Genre : Science
Kind : eBook
Book Rating : 645/5 ( reviews)

GET EBOOK


Book Synopsis Understanding Geologic Carbon Sequestration and Gas Hydrate from Molecular Simulation by : Yongchen Song

Download or read book Understanding Geologic Carbon Sequestration and Gas Hydrate from Molecular Simulation written by Yongchen Song. This book was released on 2024-03-09. Available in PDF, EPUB and Kindle. Book excerpt: The development, storage and comprehensive utilization of energy is an important subject concerned by scientists all over the world. Carbon capture and storage technology is one of the most effective mitigation technologies for global climate change, accurate understanding of the migration of multiphase fluids in reservoirs is crucial for reservoir stock evaluation and safety evaluation. Understanding Carbon Geologic Sequestration and Gas Hydrate from Molecular Simulation systematically introduces CO2 geological sequestration and gas hydrate at the molecular-scale, with research including interfacial properties of multiphase, multicomponent systems, hydrogen bonding properties, adsorption characteristics of CO2 / CH4 in the pore, kinetic properties of decomposition/nucleation/growth of gas hydrate, the influence of additives on gas hydrate growth dynamics, and hydrate prevention and control technology. This book focuses on research-based achievements and provides a comprehensive look at global progress in the field. Because there are limited resources available on carbon geologic sequestration technology and gas hydrate technology at the molecular level, the authors wrote this book to fill a gap in scientific literature and prompt further research. - Distills learnings for fundamental and advanced knowledge of molecular simulation in carbon dioxide and gas hydrate storage - Synthesizes knowledge about the development status of CGS technology and hydrate technology in the molecular field – tackling these technologies from a microscopic perspective - Analyzes scientific problems related to CGS technology and hydrate technology based on molecular simulation methods - Explores challenges relative to carbon dioxide and hydrate storage - Provides hierarchical analysis combined with the authors' own research-based case studies for enhanced comprehension and application

Carbon Dioxide Chemistry, Capture and Oil Recovery

Download Carbon Dioxide Chemistry, Capture and Oil Recovery PDF Online Free

Author :
Release : 2018-08-16
Genre : Science
Kind : eBook
Book Rating : 74X/5 ( reviews)

GET EBOOK


Book Synopsis Carbon Dioxide Chemistry, Capture and Oil Recovery by : Iyad Karamé

Download or read book Carbon Dioxide Chemistry, Capture and Oil Recovery written by Iyad Karamé. This book was released on 2018-08-16. Available in PDF, EPUB and Kindle. Book excerpt: Fossil fuels still need to meet the growing demand of global economic development, yet they are often considered as one of the main sources of the CO2 release in the atmosphere. CO2, which is the primary greenhouse gas (GHG), is periodically exchanged among the land surface, ocean, and atmosphere where various creatures absorb and produce it daily. However, the balanced processes of producing and consuming the CO2 by nature are unfortunately faced by the anthropogenic release of CO2. Decreasing the emissions of these greenhouse gases is becoming more urgent. Therefore, carbon sequestration and storage (CSS) of CO2, its utilization in oil recovery, as well as its conversion into fuels and chemicals emerge as active options and potential strategies to mitigate CO2 emissions and climate change, energy crises, and challenges in the storage of energy.

Carbon Capture, Utilization and Sequestration

Download Carbon Capture, Utilization and Sequestration PDF Online Free

Author :
Release : 2018-09-12
Genre : Technology & Engineering
Kind : eBook
Book Rating : 645/5 ( reviews)

GET EBOOK


Book Synopsis Carbon Capture, Utilization and Sequestration by : Ramesh K. Agarwal

Download or read book Carbon Capture, Utilization and Sequestration written by Ramesh K. Agarwal. This book was released on 2018-09-12. Available in PDF, EPUB and Kindle. Book excerpt: This book is divided in two sections. Several chapters in the first section provide a state-of-the-art review of various carbon sinks for CO2 sequestration such as soil and oceans. Other chapters discuss the carbon sequestration achieved by storage in kerogen nanopores, CO2 miscible flooding and generation of energy efficient solvents for postcombustion CO2 capture. The chapters in the second section focus on monitoring and tracking of CO2 migration in various types of storage sites, as well as important physical parameters relevant to sequestration. Both researchers and students should find the material useful in their work.

Integrated Reservoir Studies for CO2-Enhanced Oil Recovery and Sequestration

Download Integrated Reservoir Studies for CO2-Enhanced Oil Recovery and Sequestration PDF Online Free

Author :
Release : 2017-03-30
Genre : Science
Kind : eBook
Book Rating : 439/5 ( reviews)

GET EBOOK


Book Synopsis Integrated Reservoir Studies for CO2-Enhanced Oil Recovery and Sequestration by : Shib Sankar Ganguli

Download or read book Integrated Reservoir Studies for CO2-Enhanced Oil Recovery and Sequestration written by Shib Sankar Ganguli. This book was released on 2017-03-30. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the feasibility of CO2-EOR and sequestration in a mature Indian oil field, pursuing for the first time a cross-disciplinary approach that combines the results from reservoir modeling and flow simulation, rock physics modeling, geomechanics, and time-lapse (4D) seismic monitoring study. The key findings presented indicate that the field under study holds great potential for enhanced oil recovery (EOR) and subsequent CO2 storage. Experts around the globe argue that storing CO2 by means of enhanced oil recovery (EOR) could support climate change mitigation by reducing the amount of CO2 emissions in the atmosphere by ca. 20%. CO2-EOR and sequestration is a cutting-edge and emerging field of research in India, and there is an urgent need to assess Indian hydrocarbon reservoirs for the feasibility of CO2-EOR and storage. Combining the fundamentals of the technique with concrete examples, the book is essential reading for all researchers, students and oil & gas professionals who want to fully understand CO2-EOR and its geologic sequestration process in mature oil fields.

You may also like...