Share

A Study of Electrical and Material Characteristics of III-V MOSFETs and TFETs with High-[kappa] Gate Dielectrics

Download A Study of Electrical and Material Characteristics of III-V MOSFETs and TFETs with High-[kappa] Gate Dielectrics PDF Online Free

Author :
Release : 2010
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis A Study of Electrical and Material Characteristics of III-V MOSFETs and TFETs with High-[kappa] Gate Dielectrics by : Han Zhao

Download or read book A Study of Electrical and Material Characteristics of III-V MOSFETs and TFETs with High-[kappa] Gate Dielectrics written by Han Zhao. This book was released on 2010. Available in PDF, EPUB and Kindle. Book excerpt: The performance and power scaling of metal-oxide-semiconductor field-effect-transistors (MOSFETs) has been historically achieved through shrinking the gate length of transistors for over three decades. As Si complementary metal-oxide-semiconductor (CMOS) scaling is approaching the physical and optical limits, the emerging technology involves new materials for the gate dielectrics and the channels as well as innovative structures. III-V materials have much higher electron mobility compared to Si, which can potentially provide better device performance. Hence, there have been tremendous research activities to explore the prospects of III-V materials for CMOS applications. Nevertheless, the key challenges for III-V MOSFETs with high-[kappa] oxides such as the lack of high quality, thermodynamically stable insulators that passivate the gate oxide/III-V interface still hinder the development of III-V MOS devices. The main focus of this dissertation is to develop the proper processes and structures for III-V MOS devices that result in good interface quality and high device performance. Firstly, fabrication processes and device structures of surface channel MOSFETs were investigated. The interface quality of In[subscript 0.53]Ga[subscript 0.47]As MOS devices was improved by developing the gate-last process with more than five times lower interface trap density (D[subscript it]) compared to the ones with the gate-first process. Furthermore, the optimum substrate structure was identified for inversion-type In[subscript 0.53]Ga[subscript 0.47]As MOSFETs by investigating the effects of channel doping concentration and thickness on device performance. With the proper process and channel structures, the first inversion-type enhancement-mode In[subscript 0.53]Ga[subscript 0.47]As MOSFETs with equivalent oxide thickness (EOT) of ~10 Å using atomic layer deposited (ALD) HfO2 gate dielectric were demonstrated. The second part of the study focuses on buried channel InGaAs MOSFETs. Buried channel InGaAs MOSFETs were fabricated to improve the channel mobility using various barriers schemes such as single InP barrier with different thicknesses and InP/InAlAs double-barrier. The impacts of different high-[kappa] dielectrics were also evaluated. It has been found that the key factors enabling mobility improvement at both peak and high-field mobility in In[subscript 0.7]Ga[subscript 0.3]As quantum-well MOSFETs with InP/InAlAs barrier-layers are 1) the epitaxial InP/InAlAs double-barrier confining carriers in the quantum-well channel and 2) good InP/Al2O3/HfO2 interface with small EOT. Record high channel mobility was achieved and subthreshold swing (SS) was greatly improved. Finally, InGaAs tunneling field-effect-transistors (TFETs), which are considered as the next-generation green transistors with ultra-low power consumption, were demonstrated with more than two times higher on-current while maintaining much smaller SS compared to the reported results. The improvements are believed to be due to using the In[subscript 0.7]Ga[subscript 0.3]As tunneling junction with a smaller bandgap and ALD HfO2 gate dielectric with a smaller EOT.

Fundamentals of III-V Semiconductor MOSFETs

Download Fundamentals of III-V Semiconductor MOSFETs PDF Online Free

Author :
Release : 2010-03-16
Genre : Technology & Engineering
Kind : eBook
Book Rating : 478/5 ( reviews)

GET EBOOK


Book Synopsis Fundamentals of III-V Semiconductor MOSFETs by : Serge Oktyabrsky

Download or read book Fundamentals of III-V Semiconductor MOSFETs written by Serge Oktyabrsky. This book was released on 2010-03-16. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's (such as SiO2 on Si), high-k oxides are the natural choice of dielectrics for III-V MOSFETs. The key challenge of the III-V MOSFET technology is a high-quality, thermodynamically stable gate dielectric that passivates the interface states, similar to SiO2 on Si. Several chapters give a detailed description of materials science and electronic behavior of various dielectrics and related interfaces, as well as physics of fabricated devices and MOSFET fabrication technologies. Topics also include recent progress and understanding of various materials systems; specific issues for electrical measurement of gate stacks and FETs with low and wide bandgap channels and high interface trap density; possible paths of integration of different semiconductor materials on Si platform.

III-V Metal-oxide-semiconductor Field-effect-transistors from Planar to 3D

Download III-V Metal-oxide-semiconductor Field-effect-transistors from Planar to 3D PDF Online Free

Author :
Release : 2013
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis III-V Metal-oxide-semiconductor Field-effect-transistors from Planar to 3D by : Fei Xue

Download or read book III-V Metal-oxide-semiconductor Field-effect-transistors from Planar to 3D written by Fei Xue. This book was released on 2013. Available in PDF, EPUB and Kindle. Book excerpt: Si complementary metal-oxide-semiconductor (CMOS) technology has been prospered through continuously scaling of its feature size. As scaling is approaching its physical limitations, new materials and device structures are expected. High electron mobility III-V materials are attractive as alternative channel materials for future post-Si CMOS applications due to their outstanding transport property. High-k dielectrics/metal gate stack was applied to reduced gate leakage current and thus lower the power dissipation. Combining their benefits, great efforts have been devoted to explore III-V/high-k/metal metal-oxide-semiconductor field-effect-transistors (MOSFETs). The main challenges for III-V MOSFETs include interface issues of high-k/III-V, source and drain contact, silicon integration and reliability. A comprehensive study on III-V MOSFETs has been presented here focusing on three areas: 1) III-V/high-k/metal gate stack: material and electrical properties of various high-k dielectrics on III-V substrates have been systematically examined; 2) device architecture: device structures from planar surface channel MOSFETs and buried channel quantum well FETs (QWFETs) to 3D gate-wrapped-around FETs (GWAFETs) and tunneling FETs (TFETs) have been designed and analyzed; 3) fabrication process: process flow has been set up and optimized to build scaled planar and 3D devices with feature size down to 40nm. Potential of high performances have been demonstrated using novel III-V/high-k devices. Effective channel mobility was significantly improved by applying buried channel QWFET structure. Short channel effect control for sub-100nm devices was enhanced by shrinking gate dielectrics, reducing channel thickness and moving from 2D planar to 3D GWAFET structure. InGaAs TFETs have also been developed for ultra-low power application. This research work demonstrates that III-V/high-k/metal MOSFETs with superior device performances are promising candidates for future ultimately scaled logic devices.

High-k Gate Dielectric Materials

Download High-k Gate Dielectric Materials PDF Online Free

Author :
Release : 2020-12-18
Genre : Science
Kind : eBook
Book Rating : 764/5 ( reviews)

GET EBOOK


Book Synopsis High-k Gate Dielectric Materials by : Niladri Pratap Maity

Download or read book High-k Gate Dielectric Materials written by Niladri Pratap Maity. This book was released on 2020-12-18. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores and addresses the challenges of high-k gate dielectric materials, one of the major concerns in the evolving semiconductor industry and the International Technology Roadmap for Semiconductors (ITRS). The application of high-k gate dielectric materials is a promising strategy that allows further miniaturization of microelectronic components. This book presents a broad review of SiO2 materials, including a brief historical note of Moore’s law, followed by reliability issues of the SiO2 based MOS transistor. It goes on to discuss the transition of gate dielectrics with an EOT ~ 1 nm and a selection of high-k materials. A review of the various deposition techniques of different high-k films is also discussed. High-k dielectrics theories (quantum tunneling effects and interface engineering theory) and applications of different novel MOSFET structures, like tunneling FET, are also covered in this book. The volume also looks at the important issues in the future of CMOS technology and presents an analysis of interface charge densities with the high-k material tantalum pentoxide. The issue of CMOS VLSI technology with the high-k gate dielectric materials is covered as is the advanced MOSFET structure, with its working structure and modeling. This timely volume will prove to be a valuable resource on both the fundamentals and the successful integration of high-k dielectric materials in future IC technology.

Advanced III-V MOSFET

Download Advanced III-V MOSFET PDF Online Free

Author :
Release : 2016
Genre :
Kind : eBook
Book Rating : /5 ( reviews)

GET EBOOK


Book Synopsis Advanced III-V MOSFET by : Donghyi Koh

Download or read book Advanced III-V MOSFET written by Donghyi Koh. This book was released on 2016. Available in PDF, EPUB and Kindle. Book excerpt: As scaling of silicon-based CMOS devices approaches its end, there is an ever increasing interest in high mobility materials. Among potential candidates for future CMOS devices, III-V materials are the most promising option due to their superior carrier transport properties. Despite their attractive material properties, they face several critical challenges that need to be resolved. The main limitation in III-V MOSFETs is lack of a good native oxide. Recently, devices utilizing a gate stack formed with high-[greek small letter kappa] and metal gate electrode are being explored for EOT scaling. Compared to Si MOSFETs, the surfaces of III-V channel materials are prone to deteriorate, resulting in degradation threshold voltage control, subthreshold characteristics, and overall device performance. The purpose of this dissertation is to address improvement of surface characteristics of III-V materials, especially, InGaAs. First of all, beryllium oxide (BeO) is considered as interface passivation layer for InGaAs MOSFETs. In order to apply BeO onto InGaAs, the chemical and mechanical properties are first studied. Liquid BeO precursor is never used in ALD systems. The chemical properties of ALD BeO film are revealed from AES, XPS, NRA, RBS, and REELS. Using nano-indentation, the mechanical characteristics of ALD BeO are investigated. The second part of the study focuses on the application of ALD BeO to InGaAs MOSFETs. The surface channel MOSFET is employed to understand BeO dielectric with III-V channel. The quantum well (QW) structure is known to withstand InGaAs intrinsic material properties from a device point of view. ALD BeO is applied to QW InGaAs MOSFETs as an interface passivation layer below HfO2. The impact of ALD BeO application for interface passivation is presented using the improvement in device characteristics, for example, drive current (ION), low leakage current (IOFF), effective mobility ([mu]eff), and interface trap density (Dit). The third and final part are about process research for InGaAs surface quality. III-V channel materials are inherent to create notorious native oxide that needs to be treated before the fabrication process. In order to protect pristine III-V surface, in-situ Ar treatment is studied and used before high-[greek small letter kappa] deposition. In addition, deuterium (D2) high-pressure annealing is considered to passivate III-V interface with high-[greek small letter kappa]. To demonstrate the efficacy of these treatment processes, InGaAs MOSCAPs are fabricated, and capacitance characteristics are analyzed and compared. The C-V hysteresis and multi-frequency C-V are measured, and the interface trap density (Dit) is extracted using the C-V result.

You may also like...