Share

Predictive Analytics

Download Predictive Analytics PDF Online Free

Author :
Release : 2016-01-12
Genre : Business & Economics
Kind : eBook
Book Rating : 654/5 ( reviews)

GET EBOOK


Book Synopsis Predictive Analytics by : Eric Siegel

Download or read book Predictive Analytics written by Eric Siegel. This book was released on 2016-01-12. Available in PDF, EPUB and Kindle. Book excerpt: "Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Download Fundamentals of Machine Learning for Predictive Data Analytics, second edition PDF Online Free

Author :
Release : 2020-10-20
Genre : Computers
Kind : eBook
Book Rating : 108/5 ( reviews)

GET EBOOK


Book Synopsis Fundamentals of Machine Learning for Predictive Data Analytics, second edition by : John D. Kelleher

Download or read book Fundamentals of Machine Learning for Predictive Data Analytics, second edition written by John D. Kelleher. This book was released on 2020-10-20. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Predictive Analytics For Dummies

Download Predictive Analytics For Dummies PDF Online Free

Author :
Release : 2014-03-06
Genre : Business & Economics
Kind : eBook
Book Rating : 412/5 ( reviews)

GET EBOOK


Book Synopsis Predictive Analytics For Dummies by : Anasse Bari

Download or read book Predictive Analytics For Dummies written by Anasse Bari. This book was released on 2014-03-06. Available in PDF, EPUB and Kindle. Book excerpt: Combine business sense, statistics, and computers in a new and intuitive way, thanks to Big Data Predictive analytics is a branch of data mining that helps predict probabilities and trends. Predictive Analytics For Dummies explores the power of predictive analytics and how you can use it to make valuable predictions for your business, or in fields such as advertising, fraud detection, politics, and others. This practical book does not bog you down with loads of mathematical or scientific theory, but instead helps you quickly see how to use the right algorithms and tools to collect and analyze data and apply it to make predictions. Topics include using structured and unstructured data, building models, creating a predictive analysis roadmap, setting realistic goals, budgeting, and much more. Shows readers how to use Big Data and data mining to discover patterns and make predictions for tech-savvy businesses Helps readers see how to shepherd predictive analytics projects through their companies Explains just enough of the science and math, but also focuses on practical issues such as protecting project budgets, making good presentations, and more Covers nuts-and-bolts topics including predictive analytics basics, using structured and unstructured data, data mining, and algorithms and techniques for analyzing data Also covers clustering, association, and statistical models; creating a predictive analytics roadmap; and applying predictions to the web, marketing, finance, health care, and elsewhere Propose, produce, and protect predictive analytics projects through your company with Predictive Analytics For Dummies.

Predictive Analytics

Download Predictive Analytics PDF Online Free

Author :
Release : 2017-07-13
Genre : Business & Economics
Kind : eBook
Book Rating : 82X/5 ( reviews)

GET EBOOK


Book Synopsis Predictive Analytics by : Conrad Carlberg

Download or read book Predictive Analytics written by Conrad Carlberg. This book was released on 2017-07-13. Available in PDF, EPUB and Kindle. Book excerpt: EXCEL 2016 PREDICTIVE ANALYTICS FOR SERIOUS DATA CRUNCHERS! Now, you can apply cutting-edge predictive analytics techniques to help your business win–and you don’t need multimillion-dollar software to do it. All the tools you need are available in Microsoft Excel 2016, and all the knowledge and skills are right here, in this book! Microsoft Excel MVP Conrad Carlberg shows you how to use Excel predictive analytics to solve real problems in areas ranging from sales and marketing to operations. Carlberg offers unprecedented insight into building powerful, credible, and reliable forecasts, helping you gain deep insights from Excel that would be difficult to uncover with costly tools such as SAS or SPSS. Fully updated for Excel 2016, this guide contains valuable new coverage of accounting for seasonality and managing complex consumer choice scenarios. Throughout, Carlberg provides downloadable Excel 2016 workbooks you can easily adapt to your own needs, plus VBA code–much of it open-source–to streamline especially complex techniques. Step by step, you’ll build on Excel skills you already have, learning advanced techniques that can help you increase revenue, reduce costs, and improve productivity. By mastering predictive analytics, you’ll gain a powerful competitive advantage for your company and yourself. Learn the “how” and “why” of using data to make better decisions, and choose the right technique for each problem Capture live real-time data from diverse sources, including third-party websites Use logistic regression to predict behaviors such as “will buy” versus “won’t buy” Distinguish random data bounces from real, fundamental changes Forecast time series with smoothing and regression Account for trends and seasonality via Holt-Winters smoothing Prevent trends from running out of control over long time horizons Construct more accurate predictions by using Solver Manage large numbers of variables and unwieldy datasets with principal components analysis and Varimax factor rotation Apply ARIMA (Box-Jenkins) techniques to build better forecasts and clarify their meaning Handle complex consumer choice problems with advanced logistic regression Benchmark Excel results against R results

Predictive Analytics and Data Mining

Download Predictive Analytics and Data Mining PDF Online Free

Author :
Release : 2014-11-27
Genre : Computers
Kind : eBook
Book Rating : 507/5 ( reviews)

GET EBOOK


Book Synopsis Predictive Analytics and Data Mining by : Vijay Kotu

Download or read book Predictive Analytics and Data Mining written by Vijay Kotu. This book was released on 2014-11-27. Available in PDF, EPUB and Kindle. Book excerpt: Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples

You may also like...